Study on Degradation of Leaf Litter of Five Tree Species by Perionyx excavatus with Relation to Their Nutrient and Anti-nutrient Content

2021 ◽  
pp. 1-9
Author(s):  
Sayantani Pattanayak ◽  
Rupa Dasgupta ◽  
Partha Pratim Chakravorty ◽  
Susanta Kumar Chakraborty
2012 ◽  
Vol 90 (8) ◽  
pp. 991-998 ◽  
Author(s):  
C.K. Adams ◽  
D. Saenz

Chinese tallow (Triadica sebifera (L.) Small) is an aggressive invasive tree species that can be abundant in parts of its non-native range. This tree species has the capability of producing monocultures, by outcompeting native trees, which can be in or near wetlands that are utilized by breeding amphibians. Existing research suggests that leaf litter from invasive Chinese tallow reduces survival in larval anurans. The purpose of this study was to determine the effects of Chinese tallow leaf litter on anuran eggs. We exposed eggs of the Southern Leopard Frog ( Lithobates sphenocephalus (Cope, 1886)) at various stages of development to different concentrations of Chinese tallow leaf litter to determine survival. Eggs in the earliest stages of development that we exposed to tallow leaf litter died, regardless of concentration; however, some more-developed eggs exposed to tallow leaf litter did hatch. We determined that the greater the concentration of tallow leaf litter, the lower the dissolved oxygen and pH levels we observed. We suggest that changes in these water-quality parameters are the cause of the observed mortality of anuran eggs in our experiments. Eggs exposed to water containing tallow leaf litter with dissolved oxygen <1.59 mg/L and a pH <5.29 did not survive to hatching.


2020 ◽  
Vol 48 ◽  
pp. 11-25
Author(s):  
Paloma de las Heras ◽  
Silvia Medina-Villar ◽  
M.Esther Pérez-Corona ◽  
Beatriz R. Vázquez-de-Aldana

2009 ◽  
Vol 2 (5) ◽  
pp. 183-186 ◽  
Author(s):  
H Mahmood ◽  
SH Limon ◽  
MS Rahman ◽  
AK Azad ◽  
MS Islam ◽  
...  
Keyword(s):  

2018 ◽  
Vol 45 (2) ◽  
pp. 72-81 ◽  
Author(s):  
Yevhen Maltsev ◽  
Irina Maltseva

Abstract The forest litter plays a significant role in forest ecosystems. The composition of the litter biota comprises micro- and mesofauna, and a great diversity of microorganisms, including unrecognized algae (eukaryotic representatives and Cyanoprokaryota). The aim of this work was to study the diversity of algae in the different types of forest litters and to clarify the relationship between the algae composition and the forest-forming tree species. Our results show that the pine forest litter is the most appropriate habitat for the development of green and yellow-green algae and that this litter type limits the variety of blue-green ones. The admixture of deciduous leaf litter to pine litter caused an increase in the species richness of blue-green algae and diatoms. The algae were unevenly distributed across the sub-horizons of pine litter. The highest species richness of algae was identified in the enzymatic sub-horizon of litter. The peculiarity of the composition of leaf litter algae was a significant variety of green, yellow-green and blue-green algae. The spatial organization of algae communities in the leaf litter was characterized by equal distribution of algae species in the litter-subhorizons.


2004 ◽  
Vol 47 (6) ◽  
pp. 933-943 ◽  
Author(s):  
Maria Regina Torres Boeger ◽  
Luiz Carlos Alves ◽  
Raquel Rejane Bonatto Negrelle

We examined the leaf morphology and anatomy of 89 tree species growing in an area of coastal Atlantic Forest in South Brazil. The majority of the species (> 75%) had small (notophyll and microphyll) elliptical simple leaves with entire margins. These leaves presented a typical anatomical structure consisting of a single epidermal cell layer, single palisade parenchyma cell layer, and spongy parenchyma with 5 to 8 cell layers. The sclerenchyma was limited to the vascular bundles. The majority of the tree species (91%) had leaves with mesomorphic characteristics. Few species depicted leaves with xeromorphic features as would be expected in such oligotrophic sandy soil. These mesomorphic features appeared to be associated to high efficiency mechanisms for nutrient cycling that compensated for the low nutrient content of the mineral soil.


Sign in / Sign up

Export Citation Format

Share Document