Leaf litter of invasive Chinese tallow (Triadica sebifera) negatively affects hatching success of an aquatic breeding anuran, the Southern Leopard Frog (Lithobates sphenocephalus)

2012 ◽  
Vol 90 (8) ◽  
pp. 991-998 ◽  
Author(s):  
C.K. Adams ◽  
D. Saenz

Chinese tallow (Triadica sebifera (L.) Small) is an aggressive invasive tree species that can be abundant in parts of its non-native range. This tree species has the capability of producing monocultures, by outcompeting native trees, which can be in or near wetlands that are utilized by breeding amphibians. Existing research suggests that leaf litter from invasive Chinese tallow reduces survival in larval anurans. The purpose of this study was to determine the effects of Chinese tallow leaf litter on anuran eggs. We exposed eggs of the Southern Leopard Frog ( Lithobates sphenocephalus (Cope, 1886)) at various stages of development to different concentrations of Chinese tallow leaf litter to determine survival. Eggs in the earliest stages of development that we exposed to tallow leaf litter died, regardless of concentration; however, some more-developed eggs exposed to tallow leaf litter did hatch. We determined that the greater the concentration of tallow leaf litter, the lower the dissolved oxygen and pH levels we observed. We suggest that changes in these water-quality parameters are the cause of the observed mortality of anuran eggs in our experiments. Eggs exposed to water containing tallow leaf litter with dissolved oxygen <1.59 mg/L and a pH <5.29 did not survive to hatching.

2013 ◽  
Vol 111 (5) ◽  
pp. 895-904 ◽  
Author(s):  
Joice Ndlovu ◽  
David M. Richardson ◽  
John R. U. Wilson ◽  
Martin O'Leary ◽  
Johannes J. Le Roux

2021 ◽  
Author(s):  
Olaniyi O Ajala ◽  
Kathryn R Kidd ◽  
Brian P Oswald ◽  
Yuhui Weng ◽  
Jeremy P Stovall

Abstract A greenhouse experiment was designed to determine the interactive effect of light, flooding, and competition on the growth and performance of Chinese tallow (Triadica sebifera [L.] Roxb.) and three tree species native to the southeastern United States: water tupelo (Nyssa aquatica L.), sugarberry (Celtis occidentalis L.), and green ash (Fraxinus pennsylvanica Marshall). The experiment used a factorial design that received two treatments: light (low irradiance or high irradiance) and flood (nonflooded and flooded) regimes. In the nonflooded and high irradiance treatment, changes in the growth (ground diameter, number of leaves, and total biomass) indicated that growth metrics of tallow were highest when growing with sugarberry and water tupelo but decreased when tallow was in competition with green ash. In contrast, competition with tallow reduced the height, net photosynthetic rate, stomatal conductance, and transpiration rate of water tupelo. The results showed that tallow had lower growth metrics when in competition with green ash at no apparent decrease in the growth of green ash except for growth rate. Our results suggest that tallow may be less competitive with certain native species and underplanting may be a possible opportunity for improving the success rates of native trees species establishment in areas prone to tallow invasion. Study Implications: Chinese tallow is a highly invasive tree species in the southeastern coastal states and in this study, we examined the growth and survival of tallow in competition with tree species native to the southeastern coastal states, USA. The growth of tallow differed greatly among native species in well-drained environments lacking forest overstory with lower growth metrics when grown with green ash but higher growth metrics when grown with water tupelo and sugarberry. Following density reduction treatments, we recommend management actions that promote the regeneration of native tree species to occupy the open vegetation canopy and suppress reestablishment of tallow.


Ecology ◽  
2020 ◽  
Vol 101 (5) ◽  
Author(s):  
Jaime Moyano ◽  
Mariano A. Rodriguez‐Cabal ◽  
Martin A. Nuñez

Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 279 ◽  
Author(s):  
Thomas E. Marler

Research Highlights: Established stands of Leucaena leucocephala (Lam.) de Wit, Spathodea campanulata P. Beauv., and Vitex parviflora Juss. modified soils in Guam’s limestone forests, reducing storage pools of carbon, nitrogen, and phosphorus. Background and Objectives: Invasive plants may engineer negative changes in ecosystem properties. This study was conducted to determine changes in soil chemistry following infestations of three problematic tree species on Guam. Materials and Methods: Minerals, metals, and mineralization dynamics were measured in invaded sites and paired sites with biodiverse native tree cover. Results: Most soil properties were significantly changed by long-term infestations of the invasive tree species. The soils within invaded sites exhibited total carbon, total nitrogen, and available phosphorus that were less than native sites. In contrast, the carbon/nitrogen ratio increased for every species-site combination. The other chemical properties were idiosyncratic among the sites and species. Conclusions: Mitigation and restoration activities that include the removal of these trees from project sites may require many years for the below-ground ecosystems to return to their native state. These three invasive trees decrease the ability of Guam soils to sequester recalcitrant forms of carbon, nitrogen, and phosphorus.


2014 ◽  
Vol 19 (5) ◽  
pp. 469-472
Author(s):  
Hiroyuki Kurokochi ◽  
Hiroshi Uchiyama ◽  
Mikio Hasegawa ◽  
Yoko Saito ◽  
Yuji Ide

2015 ◽  
Vol 8 (1) ◽  
pp. 32-43 ◽  
Author(s):  
Lauren S. Pile ◽  
Geofeng Geoff Wang ◽  
Robert Polomski ◽  
Greg Yarrow ◽  
Claire M. Stuyck

AbstractNonnative invasive plants (NNIP) have far-reaching effects on native ecosystems worldwide. Understanding the role of generalist seed dispersers in spreading NNIP across the landscape is important to the conservation of native ecosystems and to the management of NNIP. We studied white-tailed deer (Odocoileus virginianus) as a seed disperser in a mixed maritime pine (Pinus spp.) forests on Parris Island, SC, with particular interest in the dispersal of Chinese tallowtree [Triadica sebifera (L.) Small], a highly invasive tree species in the southeastern United States, which is a management concern on Parris Island, SC. We collected deer scat pellet groups along transects in two forest types: those that had recently been treated with silvicultural timber harvest (thinned) and those that have not been so treated (unthinned). Using two pellet-treatment methods, directly planting or rinsing and sorting, we determined that, out of 25 species grown under greenhouse conditions, 28% (n = 7) were nonnative, small-seeded, herbaceous species. However, T. sebifera was not identified in either of the two treatment methods. Recent forest thinning significantly affected the number of species determined in deer pellet groups (F = 8.37; df = 1; P < 0.01), with more native plant species identified in unthinned (x̄ = 25 ± 11) than in thinned (x̄ = 3 ± 10) forest stands (F = 5.33; df = 1; P = 0.02). Our results indicate that white-tailed deer are actively dispersing nonnative seeds but not those of T. sebifera or other woody NNIP.


Sign in / Sign up

Export Citation Format

Share Document