Green’s Function (GF) for the Two Dimensional (2D) Time Dependent Inhomogeneous Wave Equation

2017 ◽  
Vol 14 (1) ◽  
pp. 1-17
Author(s):  
Akpata Erhieyovwe ◽  
Umukoro Judith ◽  
Enaibe Edison
1989 ◽  
Vol 209 ◽  
pp. 385-403 ◽  
Author(s):  
H. M. Atassi ◽  
J. Grzedzinski

For small-amplitude vortical and entropic unsteady disturbances of potential flows, Goldstein proposed a partial splitting of the velocity field into a vortical part u(I) that is a known function of the imposed upstream disturbance and a potential part ∇ϕ satisfying a linear inhomogeneous wave equation with a dipole-type source term. The present paper deals with flows around bodies with a stagnation point. It is shown that for such flows u(I) becomes singular along the entire body surface and its wake and as a result ∇ϕ will also be singular along the entire body surface. The paper proposes a modified splitting of the velocity field into a vortical part u(R) that has zero streamwise and normal components along the body surface, an entropy-dependent part and a regular part ∇ϕ* that satisfies a linear inhomogeneous wave equation with a modified source term.For periodic disturbances, explicit expressions for u(R) are given for three-dimensional flows past a single obstacle and for two-dimensional mean flows past a linear cascade. For weakly sheared flows, it is shown that if the mean flow has only a finite number of isolated stagnation points, u(R) will be finite along the body surface. On the other hand, if the mean flow has a stagnation line along the body surface such as in two-dimensional flows then the component of u(R) in this direction will have a logarithmic singularity.For incompressible flows, the boundary-value problem for ϕ* is formulated in terms of an integral equation of the Fredholm type. The theory is applied to a typical bluff body. Detailed calculations are carried out to show the velocity and pressure fields in response to incident harmonic disturbances.


2007 ◽  
Vol 21 (02n03) ◽  
pp. 139-154 ◽  
Author(s):  
J. H. ASAD

A first-order differential equation of Green's function, at the origin G(0), for the one-dimensional lattice is derived by simple recurrence relation. Green's function at site (m) is then calculated in terms of G(0). A simple recurrence relation connecting the lattice Green's function at the site (m, n) and the first derivative of the lattice Green's function at the site (m ± 1, n) is presented for the two-dimensional lattice, a differential equation of second order in G(0, 0) is obtained. By making use of the latter recurrence relation, lattice Green's function at an arbitrary site is obtained in closed form. Finally, the phase shift and scattering cross-section are evaluated analytically and numerically for one- and two-impurities.


Sign in / Sign up

Export Citation Format

Share Document