scholarly journals TURBULENCE APPEARANCE AT THE BOTTOM OF A SOLITARY WAVE

2012 ◽  
Vol 1 (33) ◽  
pp. 17
Author(s):  
Paolo Blondeaux ◽  
Jan Pralits ◽  
Giovanna Vittori

The conditions leading to transition and turbulence appearance at the bottom of a solitary wave are determined by means of a linear stability analysis of the laminar flow in the bottom boundary layer. The ratio between the wave amplitude and the thickness of the viscous bottom boundary layer is assumed to be large and a 'momentary' criterion of instability is used. The results obtained show that the laminar regime becomes unstable, during the decelerating phase, if the height of the wave is larger than a threshold value which depends on the ratio between the boundary layer thickness and the local water depth. A comparison of the theoretical results with the experimental measurements of Sumer et al. (2010) seems to support the stability analysis.

2012 ◽  
Vol 709 ◽  
pp. 396-407 ◽  
Author(s):  
Paolo Blondeaux ◽  
Jan Pralits ◽  
Giovanna Vittori

AbstractA linear stability analysis of the laminar flow in the boundary layer at the bottom of a solitary wave is made to determine the conditions leading to transition and the appearance of turbulence. The Reynolds number of the phenomenon is assumed to be large and a ‘momentary’ criterion of instability is used. The results show that the laminar regime becomes unstable during the decelerating phase, when the height of the solitary wave exceeds a threshold value which depends on the ratio between the boundary layer thickness and the local water depth. A comparison of the theoretical results with the experimental measurements of Sumer et al. (J. Fluid Mech., vol. 646, 2010, pp. 207–231) supports the analysis.


2019 ◽  
Vol 874 ◽  
pp. 158-184 ◽  
Author(s):  
Paul M. Branson ◽  
Marco Ghisalberti ◽  
Gregory N. Ivey ◽  
Emil J. Hopfinger

Topographic complexity on continental shelves is the catalyst that transforms the barotropic tide into the secondary and residual circulations that dominate vertical and cross-shelf mixing processes. Island wakes are one such example that are observed to significantly influence the transport and distribution of biological and physical scalars. Despite the importance of island wakes, to date, no sufficient, mechanistic description of the physical processes governing their development exists for the general case of unsteady tidal forcing. Controlled laboratory experiments are necessary for the understanding of this complex flow phenomenon. Here, three-dimensional velocity field measurements of cylinder wakes in shallow-water oscillatory flow are conducted across a parameter space that is typical of tidal flow around shallow islands. The wake form in steady flows is typically described in terms of the stability parameter $S=c_{f}D/h$ (where $D$ is the island diameter, $h$ is the water depth and $c_{f}$ is the bottom boundary friction coefficient); in tidal flows, there is an additional dependence on the Keulegan–Carpenter number $KC=U_{0}T/D$ (where $U_{0}$ is the tidal velocity amplitude and $T$ is the tidal period). In this study we demonstrate that when the influence of bottom friction is confined to a Stokes boundary layer the stability parameter is given by $S=\unicode[STIX]{x1D6FF}^{+}/KC$ where $\unicode[STIX]{x1D6FF}^{+}$ is the ratio of the wavelength of the Stokes bottom boundary layer to the depth. Three classes of wake form are observed with decreasing wake stability: (i) steady bubble for $S\gtrsim 0.1$; (ii) unsteady bubble for $0.06\lesssim S\lesssim 0.1$; and (iii) vortex shedding for $S\lesssim 0.06$. Transitions in wake form and wake stability are shown to depend on the magnitude and temporal evolution of the wake return flow. Scaling laws are developed to allow upscaling of the laboratory results to island wakes. Vertical and lateral transport depend on three parameters: (i) the flow aspect ratio $h/D$; (ii) the amplitude of tidal motion relative to the island size, given by $KC$; and (iii) the relative influence of bottom friction to the flow depth, given by $\unicode[STIX]{x1D6FF}^{+}$. A model of wake upwelling based on Ekman pumping from the bottom boundary layer demonstrates that upwelling in the near-wake region of an island scales with $U_{0}(h/D)KC^{1/6}$ and is independent of the wake form. Finally, we demonstrate an intrinsic link between the dynamical eddy scales, predicted by the Ekman pumping model, and the island wake form and stability.


2012 ◽  
Vol 59 (1) ◽  
pp. 46-56 ◽  
Author(s):  
Hitoshi Tanaka ◽  
Bambang Winarta ◽  
Suntoyo ◽  
Hiroto Yamaji

2014 ◽  
Vol 753 ◽  
pp. 554-559 ◽  
Author(s):  
Yong Sung Park ◽  
Joris Verschaeve ◽  
Geir K. Pedersen ◽  
Philip L.-F. Liu

AbstractWe address two shortcomings in the article by Liu, Park & Cowen (J. Fluid Mech., vol. 574, 2007, pp. 449–463), which gave a theoretical and experimental treatise of the bottom boundary-layer under a solitary wave.


2015 ◽  
Vol 27 (4) ◽  
pp. 044101 ◽  
Author(s):  
Mahmoud M. Sadek ◽  
Luis Parras ◽  
Peter J. Diamessis ◽  
Philip L.-F. Liu

1984 ◽  
Vol 146 ◽  
pp. 303-312 ◽  
Author(s):  
S. J. Jacobs

The bottom boundary layer under a progressive water wave is studied using Saffman's turbulence model. Saffman's equations are analysed asymptotically for the case Re [Gt ] 1, where Re is a Reynolds number based on a characteristic magnitude of the orbital velocity and a characteristic orbital displacement. Approximate solutions for the mass-transport velocity at the edge of the boundary layer and for the bottom stress are obtained, and Taylor's formula for the rate of energy dissipation is verified. The theoretical results are found to agree well with observations for sufficiently large Reynolds numbers.


Author(s):  
Mohammad BAGUS ADITYAWAN ◽  
Bambang WINARTA ◽  
Hitoshi TANAKA ◽  
Hiroto YAMAJI

Sign in / Sign up

Export Citation Format

Share Document