laminar regime
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 29)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 39 (5) ◽  
pp. 1575-1582
Author(s):  
Mohammed Salah Belalem ◽  
Mohammed Elmir ◽  
Mohammed Tamali ◽  
Razli Mehdaoui ◽  
Abdelkrim Missoum ◽  
...  

In this work, we propose to experimentally and numerically study the natural convection in laminar regime in an agricultural greenhouse located in South West of Algeria and more precisely in the Adrar area. The numerical study is two-dimensional and was carried out on a tunnel greenhouse with an area of 180m2 located in Adrar in the southwest of Algeria (Latitude: 27°52′27″N, longitude: 0°17′37″W, the laltitude above sea level is 257 m), with polyethylene cover and houses two rows of tomato plants. The experimental study was made during the winter or flowering period of tomato plants (February) when the temperature difference outside the greenhouse is maximum: T min = 3℃ at night and T max = 20℃ the day. We used a calculate code based on the finite element method to numerically simulate the phenomenon of heat transfer inside the greenhouse. The results of the numerical simulation are in the form of isotherms, streamlines and variations in temperature and speed in the greenhouse. The value of the temperature calculated by numerical simulation at the position where the sensor has been placed will be compared with that measured by the sensor. It was concluded that to have a favorable environment for the growth of tomatoes, we must keep the openings closed especially during the night without needing a heating system, especially in this region characterized by a hyper arid climate.


2021 ◽  
Vol 928 ◽  
Author(s):  
Paolo Blondeaux ◽  
Jan Oscar Pralits ◽  
Giovanna Vittori

This study contributes to an improved understanding of the stability of the boundary layer generated at the bottom of a propagating surface wave of small but finite amplitude such that both a second harmonic component and a steady streaming component, which are superimposed on the main oscillatory flow, assume significant values. A linear stability analysis of the laminar flow is made to determine the conditions leading to transition and turbulence appearance. The Reynolds number of the phenomenon is assumed to be large and a ‘momentary’ criterion of stability is used. The results show that, at a given location, the laminar regime becomes unstable when the flow close to the bottom reverses its direction from the onshore to the offshore direction and the Reynolds number exceeds a first critical value $R_{\delta ,c1}$ . However, close to the critical condition, the flow is expected to relaminarize during the other phases of the cycle. Only when the Reynolds number is increased does turbulence tend to appear also after the passage of the wave trough when the flow close to the bottom reverses from the offshore to the onshore direction. When the Reynolds number is further increased and becomes larger than a second ‘threshold’ value, the growth rate of the perturbations becomes positive over the entire wave period. The obtained results suggest the existence of four different flow regimes: the laminar regime, the disturbed laminar regime, the intermittently turbulent regime and the fully developed turbulent regime.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 462
Author(s):  
Shuai Yuan ◽  
Bingyan Jiang ◽  
Tao Peng ◽  
Qiang Li ◽  
Mingyong Zhou

A fast mixing is critical for subsequent practical development of microfluidic devices, which are often used for assays in the detection of reagents and samples. The present work sets up computational fluid dynamics simulations to explore the flow characteristic and mixing mechanism of fluids in cross-shaped mixers within the laminar regime. First, the effects of increasing an operating parameter on local mixing quality along the microchannels are investigated. It is found that sufficient diffusion cannot occur even though the concentration gradient is large at a high Reynolds number. Meanwhile, a method for calculating local mixing efficiency is also characterized. The mixing efficiency varies exponentially with the flow distance. Second, in order to optimize the cross-shaped mixer, the effects of design parameters, namely aspect ratio, mixing angle and blockage, on mixing quality are captured and the visualization of velocity and concentration distribution are demonstrated. The results show that the aspect ratio and the blockage play an important role in accelerating the mixing process. They can improve the mixing efficiency by increasing the mass transfer area and enhancing the chaotic advection, respectively. In contrast, the inflow angle that affects dispersion length is not an effective parameter. Besides, the surface roughness, which makes the disturbance of fluid flow by roughness more obvious, is considered. Three types of rough elements bring benefits for enhancing mixing quality due to the convection induced by the lateral velocity.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 435
Author(s):  
Yee Jack Ng

Quantum fluctuations endow spacetime with a foamy texture. The degree of foaminess is dictated by black hole physics to be of the holographic type. Applied to cosmology, the holographic foam model predicts the existence of dark energy with critical energy density in the current (late) universe, the quanta of which obey infinite statistics. Furthermore, we use the deep similarities between turbulence and the spacetime foam phase of strong quantum gravity to argue that the early universe was in a turbulent regime when it underwent a brief cosmic inflation with a “graceful” transition to a laminar regime. In this scenario, both the late and the early cosmic accelerations have their origins in spacetime foam.


Author(s):  
Bastien Delacroix ◽  
Louis Fradette ◽  
Francois Bertrand ◽  
Bruno Blais

The vast majority of solid-liquid mixing studies have focused on high Reynolds number applications with configurations and impeller geometries adapted to this type of regime. However, the mixing of particles in a viscous fluid is an essential element of many contemporary industries. We used the CFD-DEM model previously developed in our group to investigate solid-liquid mixing with close-clearance impellers in the laminar regime of operation. We compared different geometries that is, the double helical ribbon, anchor, Paravisc$^{TM}$, and Maxblend$^{TM}$ impellers. We investigated the impact of fluid viscosity and compared the results with those obtained with the pitched blade turbine, a more commonly used impeller, based on power consumption for equivalent mixing states. This study highlights that the higher the viscosity of the fluid, the more interesting it is to use close-clearance impellers for their ability to generate a strong shear stress and a strong bulk flow in the entire vessel.


2021 ◽  
Vol 342 ◽  
pp. 06002
Author(s):  
Daniel Ion Matei ◽  
Marin Silviu Nan ◽  
Cristian Aron ◽  
Cristina Lapadusi-Macesaru

The separation of particles with big inertial mass transported in the air, is most often done with the help of cyclones, due to their resistance to wear at contact with abrasive particles. However, pneumatic conveying of heavy and abrasive granular material mixed with fines, are problematic even for cyclone hardened inlets. The paper studies a new method of dividing the main airflow in two airstreams, one further divided in more smaller streams to achieve the laminar regime, by using a corrugated shaped inlet. Thus generating an improvement in impact resistance, overall cyclone grade efficiency and decreasing pressure drop.


Author(s):  
Jorge Ramírez-Muñoz ◽  
Román Guadarrama-Pérez ◽  
Alejandro Alvarado-Lassman ◽  
José J. Valencia-López ◽  
Valaur E. Márquez-Baños

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Guillaume Delaplace ◽  
Romain Jeantet ◽  
Richard Grenville ◽  
Gérard Cuvelier ◽  
Karine Loubiere

AbstractThe concept of Metzner and Otto was initially developed for correlating power measurements in stirred vessels for shear-thinning fluids in the laminar regime with regard to those obtained for Newtonian liquids. To get this overlap, Metzner and Otto postulated and determined an “effective shear rate” which was proportional to the rotational speed of the impeller Although it was not based on a strong theoretical background, it was rapidly admitted as a practical engineering approach and was extended for seeking out a “Newtonian correspondence” with non-Newtonian results (i.e. different classes of fluids). This was applied in a variety of tank processes even for predicting heat transfer or mixing time, which stretches far away from the frame initially envisaged by Metzner and Otto themselves. This paper aimed to show how dimensional analysis offers a theoretically founded framework to address this issue without the experimental determination of effective quantities. This work also aimed to enlarge the underlying questions to any process in which a variable material property exists and impacts the process. For that purpose, the pending questions of Metzner and Otto concept were first reminded (i.e. dependence of the Metzner–Otto constant to rheological parameters, physical meaning of the effective shear rate, etc.). Then, the theoretical background underlying the dimensional analysis was described and applied to the case of variable material properties (including non-Newtonian fluids), by introducing in particular the concept of material similarity. Finally, two examples were proposed to demonstrate how the rigorous framework associated with the dimensional analysis is a powerful method to exceed the concept of Metzner and Otto and can be adapted beyond the Ostwald–de Waele power law model to a wide range of non-Newtonian fluids in various processes, without being restricted to batch reactor and laminar regime.


Sign in / Sign up

Export Citation Format

Share Document