scholarly journals SEDIMENT TRANSPORT FIELD DATA AND NUMERICAL MODELING STUDY TO SUPPORT DREDGE PIT INFILL RATE ESTIMATES

Author(s):  
Atilla Bayram ◽  
Sean O'Neil ◽  
Yang Zhang

Site specific bedload and suspended sediment transport data collected at two test pit locations over a four-day period during April 2015 were analyzed to calibrate a numerical sediment transport model of Cook Inlet, AK. The field data campaign was designed to collect suspended load and bedload field measurements and was carried out in two phases. During Phase 1, both suspended load and bedload measurements were taken at approximately 55 ft water depth. The suspended sediment concentration was observed to be nearly uniform over the water column. Laboratory analysis showed the suspended sediment had an effective grain size of approximately 0.03 mm with 0.005 mm within a 95percent confidence interval. During Phase 2, hydrodynamic, suspended load and bedload measurements were collected over four tidal cycles in the surfzone. A two-dimensional sediment transport model was developed to simulate sediment transport infill rates at the dredged areas of the Project site. The model was calibrated by comparing measured suspended load measurements made at two offshore locations. Calibration results showed that the suspended load transport rate, which is the dominant sediment transport regime in the area, can be predicted accurately at the project site. Based on the calibrated sediment transport model, preliminary annual sediment infill rates were estimated to lie between 1.1 to 1.6 ft/yr at offshore and nearshore locations, respectively, for the presently observed and measured conditions.

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Juan Antonio García-Aragón ◽  
Klever Izquierdo-Ayala ◽  
María Mercedes Castillo-Uzcanga ◽  
Laura Carrillo-Bibriezca ◽  
Humberto Salinas-Tapia

Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 18 ◽  
Author(s):  
Yong Lai ◽  
Kuowei Wu

Three-dimensional (3D) hydrostatic-pressure-assumption numerical models are widely used for environmental flows with free surfaces and phase interfaces. In this study, a new flow and sediment transport model is developed, aiming to be general and more flexible than existing models. A general set of governing equations are used for the flow and suspended sediment transport, an improved solution algorithm is proposed, and a new mesh type is developed based on the unstructured polygonal mesh in the horizontal plane and a terrain-following sigma mesh in the vertical direction. The new flow model is verified first with the experimental cases, to ensure the validity of flow and free surface predictions. The model is then validated with cases having the suspended sediment transport. In particular, turbidity current flows are simulated to examine how the model predicts the interface between the fluid and sediments. The predicted results agree well with the available experimental data for all test cases. The model is generally applicable to all open-channel flows, such as rivers and reservoirs, with both flow and suspended sediment transport issues.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2449 ◽  
Author(s):  
Jianzhong Lu ◽  
Haijun Li ◽  
Xiaoling Chen ◽  
Dong Liang

As the largest freshwater lake in China, Poyang Lake plays an important role in the ecosystem of the Yangtze River watershed. The high suspended sediment concentration (SSC) has been an increasingly significant problem under the influence of extensive sand dredging. In this study, a hydrodynamic model integrated with the two-dimensional sediment transport model was built for Poyang Lake, considering sand dredging activities detected from satellite images. The sediment transport model was set with point sources of sand dredging, and fully calibrated and validated by observed hydrological data and remote sensing results. Simulations under different dredging intensities were implemented to investigate the impacts of the spatiotemporal variation of the SSC. The results indicated that areas significantly affected by sand dredging were located in the north of the lake and along the waterway, with a total affected area of about 730 km2, and this was one of the main factors causing high turbidity in the northern part of the lake. The SSC in the northern area increased, showing a spatial pattern in which the SSC varied from high to low from south to north along the main channel, which indicated close agreement with the results captured by remote sensing. In summary, this study quantified the influence of human induced activities on sediment transport for the lake aquatic ecosystem, which could help us to better understand the water quality and manage water resources.


Sign in / Sign up

Export Citation Format

Share Document