fraser river
Recently Published Documents


TOTAL DOCUMENTS

873
(FIVE YEARS 42)

H-INDEX

51
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Britta M. Voss ◽  
Timothy I. Eglinton ◽  
Bernhard Peucker-Ehrenbrink ◽  
Valier Galy ◽  
Susan Q. Lang ◽  
...  

Abstract Sources of dissolved and particulate carbon to the Fraser River system vary significantly in space and time. Tributaries in the northern interior of the basin consistently deliver higher concentrations of dissolved organic carbon (DOC) to the main stem than other tributaries. Based on samples collected near the Fraser River mouth throughout 2013, the radiocarbon age of DOC exported from the Fraser River does not change significantly across seasons despite a spike in DOC concentration during the freshet, suggesting modulation of heterogeneous upstream signals during transit through the river basin. Dissolved inorganic carbon (DIC) concentrations are highest in the Rocky Mountain headwater region where carbonate weathering is evident, but also in tributaries with high DOC concentrations, suggesting that DOC respiration may be responsible for a significant portion of DIC in this basin. Using an isotope and major ion mass balance approach to constrain the contributions of carbonate and silicate weathering and DOC respiration, we estimate that up to 29% of DIC is derived from DOC respiration in some parts of the Fraser River basin. Overall, these results indicate close coupling between the cycling of DOC and DIC, and that carbon is actively processed and transformed during transport through the river network.


2022 ◽  
Vol 264 ◽  
pp. 107695
Author(s):  
Yongsheng Wu ◽  
Charles Hannah ◽  
Pascal Matte ◽  
Mitchell O'Flaherty-Sproul ◽  
Ruping Mo ◽  
...  

2021 ◽  
Author(s):  
Merran Hague ◽  
Rachael Hornsby ◽  
Jessica Gill ◽  
Catherine Michielsens ◽  
Erica Jenkins ◽  
...  

Author(s):  
Becky L. Brice ◽  
Bethany Lynn Coulthard ◽  
Inga K. Homfeld ◽  
Laura Dye ◽  
Kevin J. Anchukaitis

Abstract The recent intensification of floods and droughts in the Fraser River Basin of British Columbia has had profound cultural, ecological, and economic impacts that are expected to be exacerbated further by anthropogenic climate change. In part due to short instrumental runoff records, the long-term stationarity of hydroclimatic extremes in this major North American watershed remains poorly understood, highlighting the need to use high-resolution paleoenvironmental proxies to inform on past streamflow. Here we use a network of tree-ring proxy records to develop 11 subbasin-scale, complementary flood- and drought-season reconstructions, the first of their kind. The reconstructions explicitly target management-relevant flood and drought seasons within each basin, and are examined in tandem to provide an expanded assessment of extreme events across the Fraser River Basin with immediate implications for water management. We find that past high flood-season flows have been of greater magnitude and occurred in more consecutive years than during the observational record alone. Early 20th century low flows in the drought season were especially severe in both duration and magnitude in some subbasins relative to recent dry periods. Our Fraser subbasin-scale reconstructions provide long-term benchmarks for the natural flood and drought variability prior to anthropogenic forcing. These reconstructions demonstrate that the instrumental streamflow records upon which current management is based likely underestimate the full natural magnitude, duration, and frequency of extreme seasonal flows in the Fraser River Basin, as well as the potential severity of future anthropogenically forced events.


Ecosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Riley J. R. Finn ◽  
Lia Chalifour ◽  
Sarah E. Gergel ◽  
Scott G. Hinch ◽  
David C. Scott ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Andrew W Bateman ◽  
Amy K Teffer ◽  
Arthur Bass ◽  
Tobi Ming ◽  
Brian P V Hunt ◽  
...  

Infectious disease from domestic hosts, held for agriculture, can impact wild species that migrate in close proximity, potentially reversing selective advantages afforded by migration. For sockeye salmon in British Columbia, Canada, juveniles migrate past numerous Atlantic salmon farms from which they may acquire a number of infectious agents. We analyse patterns of molecular detection in juvenile sockeye salmon for one bacterial pathogen, Tenacibaculum maritimum, known to cause disease in fish species around the globe and to cause mouthrot disease in farmed Atlantic salmon in BC. Our data show a clear peak in T. maritimum detections in the Discovery Islands region of BC, where sockeye migrate close to salmon farms. Using well established differential-equation models to describe sockeye migration and T. maritimum infection spread, we fit models to our detection data to assess support for multiple hypotheses describing farm- and background-origin infection. Despite a data-constrained inability to resolve certain epidemiological features of the system, such as the relative roles of post-infection mortality and recovery, our models clearly support the role of Discovery-Islands salmon farms in producing the observed patterns. Our best models (with 99.8% empirical model support) describe relatively constant (background) infection pressure, except around Discovery-Islands salmon farms, where farm-origin infection pressure peaked at 12.7 (approximate 95% CI: 4.5 to 31) times background levels. Given the evidence for farm-origin transfer of T. maritimum to Fraser-River sockeye salmon, the severity of associated disease in related species, and the imperilled nature of Fraser River sockeye generally, our results suggest the need for a more precautionary approach to managing farm/wild interactions in sockeye salmon.


2021 ◽  
Author(s):  
Sarah Z. Rosengard ◽  
Cameron Freshwater ◽  
Skip McKinnell ◽  
Yi Xu ◽  
Philippe D. Tortell

Sign in / Sign up

Export Citation Format

Share Document