scholarly journals Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production

Author(s):  
Elena Shimanskaya ◽  
Аntonina A. Stepacheva ◽  
Esther Sulman ◽  
Evgeny Rebrov ◽  
Valentina Matveeva

In this paper, the commercial 5%Pd/C and 5%Pt/C catalysts and synthesized 5%Pt/MN-270 and 5%Pd/MN-270 were used in the hydrogenolysis of lignocellulosic material (softwood sawdust) to obtain liquid fuels in the form of hydrocarbons. As lignin has a very complex structure, anisole was used as a model compound. It was found that the use Pt-containing catalysts based on hypercrosslinked polystyrene in both processes of anisole and lignin-containing feedstock conversion allowed obtaining the highest yield of oxygen-free hydrocarbons (up to 96 wt. %). Besides, the polymer based catalysts showed high stability in hydrogenolysis process in comparison with the commercial carbon based catalysts. Copyright © 2018 BCREC Group. All rights reservedReceived: 3rd March 2017; Revised: 18th August 2017; Accepted: 21st August 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018How to Cite: Shimanskaya, E.I., Stepacheva, A.A., Sulman, E.M., Rebrov, E.V., Matveeva, V.G. (2018). Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1): 74-81 (doi:10.9767/bcrec.13.1.969.74-81) 

Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 425 ◽  
Author(s):  
Ana Bjelić ◽  
Miha Grilc ◽  
Sašo Gyergyek ◽  
Andraž Kocjan ◽  
Darko Makovec ◽  
...  

Conversion of waste lignocellulosic (LC) biomass, a widely-available low-cost feedstock, into value-added biobased chemicals (and biofuels) has been gaining much attention recently. Therefore, the present lignin valorisation study was aimed at developing magnetically-separable highly-active catalysts for hydrodeoxygenation (HDO), also proposing surface chemical kinetics. Five carbonaceous substrate-deposited Ru were synthesised and tested for the HDO of monomer moiety eugenol. Their annealing temperatures differed, specifically between 300 and 750 °C, while one was not subjected to calcination. Experiments revealed the substantial influence of annealing temperature on the product distribution. Namely, fresh nonannealed nanocomposites were not active for hydrogenolysis. By further pretreatment increase, hydrogenation and, exclusively, the deoxygenation of saturated cyclic species, were enhanced, these being more promoted considering rates and yields than commercial carbon-supported ruthenium. Over 80 mol% of 4-propyl-cylohexanol and propyl-cyclohexane could be formed over the samples, treated at 500 and 600 °C, for 100 and 125 min, respectively, under 275 °C and 5 MPa of reactor hydrogen pressure. Interestingly, a notable 4-propyl-phenol amount was produced upon 750 °C pretreating. The intrinsic microkinetic model, developed previously, was applied to determine relevant turnover parameters. Calculated modelling results indicated a 47- and 10-fold greater demethoxylation and dehydroxylation mechanism ability upon the reheatingpreheating at 600 °C in comparison to industrial (heterogeneous) Ru/C.


Sign in / Sign up

Export Citation Format

Share Document