scholarly journals Inventory Model with Demand Rate Is 3-Variables Weibull Function Constant Deterioration, Constant Holding Cost and Inflation without Shortages

2016 ◽  
Vol 12 (05) ◽  
pp. 46-52
Author(s):  
Amit Kumar vats ◽  
Vijay Singh Rajput ◽  
Ranjeet Kaur
2016 ◽  
Vol 2016 ◽  
pp. 1-16
Author(s):  
Ren-Qian Zhang ◽  
Yan-Liang Wu ◽  
Wei-Guo Fang ◽  
Wen-Hui Zhou

Many inventory models with partial backordering assume that the backordered demand must be filled instantly after stockout restoration. In practice, however, the backordered customers may successively revisit the store because of the purchase delay behavior, producing a limited backorder demand rate and resulting in an extra inventory holding cost. Hence, in this paper we formulate the inventory model with partial backordering considering the purchase delay of the backordered customers and assuming that the backorder demand rate is proportional to the remaining backordered demand. Particularly, we model the problem by introducing a new inventory cost component of holding the backordered items, which has not been considered in the existing models. We propose an algorithm with a two-layer structure based on Lipschitz Optimization (LO) to minimize the total inventory cost. Numerical experiments show that the proposed algorithm outperforms two benchmarks in both optimality and efficiency. We also observe that the earlier the backordered customer revisits the store, the smaller the inventory cost and the fill rate are, but the longer the order cycle is. In addition, if the backordered customers revisit the store without too much delay, the basic EOQ with partial backordering approximates our model very well.


2014 ◽  
Vol 24 (1) ◽  
pp. 87-98 ◽  
Author(s):  
Vinod Mishra

In this paper, we develop an inventory model for non-instantaneous deteriorating items under the consideration of the facts: deterioration rate can be controlled by using the preservation technology (PT) during deteriorating period, and holding cost and demand rate both are linear function of time, which was treated as constant in most of the deteriorating inventory models. So in this paper, we developed a deterministic inventory model for non-instantaneous deteriorating items in which both demand rate and holding cost are a linear function of time, deterioration rate is constant, backlogging rate is variable and depend on the length of the next replenishment, shortages are allowed and partially backlogged. The model is solved analytically by minimizing the total cost of the inventory system. The model can be applied to optimizing the total inventory cost of non-instantaneous deteriorating items inventory for the business enterprises, where the preservation technology is used to control the deterioration rate, and demand & holding cost both are a linear function of time.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1157
Author(s):  
Valentín Pando ◽  
Luis A. San-José ◽  
Joaquín Sicilia ◽  
David Alcaide-López-de-Pablo

This paper presents the optimal policy for an inventory model where the demand rate potentially depends on both selling price and stock level. The goal is the maximization of the profitability index, defined as the ratio income/expense. A numerical algorithm is proposed to calculate the optimal selling price. The optimal values for the depletion time, the cycle time, the maximum profitability index, and the lot size are evaluated from the selling price. The solution shows that the inventory must be replenished when the stock is depleted, i.e., the depletion time is always equal to the cycle time. The optimal policy is obtained with a suitable balance between ordering cost and holding cost. A condition that ensures the profitability of the financial investment in the inventory is established from the initial parameters. Profitability thresholds for several parameters, including the scale and the non-centrality parameters, keeping all the others fixed, are evaluated. The model with an isoelastic price-dependent demand is solved as a particular case. In this last model, all the optimal values are given in a closed form, and a sensitivity analysis is performed for several parameters, including the scale parameter. The results are illustrated with numerical examples.


2021 ◽  
Vol 12 (2) ◽  
pp. 557-574
Author(s):  
Pavan Kumar

This paper proposes the optimal policies for a fuzzy inventory model considering the holding cost and ordering cost as continuous functions of time. Shortages are allowed and partially backlogged. The demand rate is assumed in such to be linearly dependent on time during on-hand inventory, while during the shortage period, it remains constant. The inventory problem is formulated in crisp environment. Considering the demand rate, holding cost and ordering cost as trapezoidal fuzzy numbers, the proposed problem is transformed into fuzzy model. For this fuzzy model, the signed distance method of defuzzification is applied to determine the average total cost (ATC) in fuzzy environment. The objective is to optimize the ATC and the order quantity. One solved example is provided in order to show the applicability of the proposed model. The convexity of the cost function is verified with the help of 3D-graph.


2021 ◽  
Vol 13 (2) ◽  
pp. 455-465
Author(s):  
S. Chandra

In this paper, a two warehouse inventory model for deteriorating items is studied with ramp type demand rate. Holding cost of rented warehouse has higher than the owned warehouse due to better preservation facilities in rented warehouse. Due to the improved services offer in rented warehouse, the deterioration rate in rented warehouse is less than deterioration rate in owned warehouse. When stock on hand is zero, the inventory manager offers a price discount to customers who are willing to backorder their demand. The study includes some features that are likely to be associated with certain types of inventory, like inventory of seasonal fruits and vegetables, newly launched fashion items, etc. The optimum ordering policy and the optimum discount offered for each backorder are determined by minimizing the total cost in a replenishment interval.


Sign in / Sign up

Export Citation Format

Share Document