periodic surface
Recently Published Documents


TOTAL DOCUMENTS

982
(FIVE YEARS 263)

H-INDEX

59
(FIVE YEARS 10)

2022 ◽  
Vol 269 ◽  
pp. 112825
Author(s):  
Xiaoji Shen ◽  
Jeffrey P. Walker ◽  
Nan Ye ◽  
Xiaoling Wu ◽  
Foad Brakhasi ◽  
...  

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Pavel N. Terekhin ◽  
Jens Oltmanns ◽  
Andreas Blumenstein ◽  
Dmitry S. Ivanov ◽  
Frederick Kleinwort ◽  
...  

Abstract Understanding the mechanisms and controlling the possibilities of surface nanostructuring is of crucial interest for both fundamental science and application perspectives. Here, we report a direct experimental observation of laser-induced periodic surface structures (LIPSS) formed near a predesigned gold step edge following single-pulse femtosecond laser irradiation. Simulation results based on a hybrid atomistic-continuum model fully support the experimental observations. We experimentally detect nanosized surface features with a periodicity of ∼300 nm and heights of a few tens of nanometers. We identify two key components of single-pulse LIPSS formation: excitation of surface plasmon polaritons and material reorganization. Our results lay a solid foundation toward simple and efficient usage of light for innovative material processing technologies.


2022 ◽  
Vol 76 (1) ◽  
Author(s):  
Dubravka Milovanović ◽  
Boris Rajčić ◽  
Sanja Petronić ◽  
Aleksandra Radulović ◽  
Bojan Radak ◽  
...  

Abstract The surface of a titanium-based alloy Ti6Al4V was subjected to modifications by a near-IR femtosecond Ti:Sapphire laser, emitting at 775 nm pulses of 200 fs duration, in single-pulse and multi-pulse regimes, with up to 400 accumulated pulses, and pulse energies ranging from 2.5 to 250 $$\upmu $$ μ J. The whole range of induced effects is presented, from gentle ablation and pattern occurrence to substantial crater formation. Very observable laser-induced parallel periodic surface structures are reported, appearing both within the damage spot area, with low fluences, and at the peripheries of the craters, with higher fluences—but also on crater walls, and inside the crater structures. Damage threshold fluences $$({F}_{\mathrm{th}})$$ ( F th ) and the incubation factor $$(\zeta )$$ ( ζ ) were also determined. Graphic abstract


Author(s):  
Yanan Li ◽  
Tianhao Zhang

Abstract The influence of laser fluences and scanning speeds on the morphologies of laser-induced periodic surface structures(LIPSS) on heated LiNbO3:Fe(1000○C) surfaces was investigated under femtosecond(fs) laser scanning irradiation. Laser fluence of 8.5 kJ/m2 and scanning speed of 1 mm/s were found to be optimum process parameters, and large-area fs-LIPSS on LiNbO3:Fe with an area of 8 mm×8 mm were fabricated with these parameters. The wettability of laser-textured LiNbO3:Fe changed to be hydrophilic, and the absorptance was improved substantially in the spectral range of 400-2000 nm. This technique is efficient, and environmentally friendly, which will attract tremendous interest in nano-photoelectron and nano-mechanics.


2021 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
Stefan Rung ◽  
Ralf Hellmann

We report on structuring copper representing soldering pads of printed circuit boards by laser-induced periodic surface structures. Femtosecond laser radiation is used to generate low spatial frequency laser-induced surface structures, having a spatial period of 992 nm and a modulation depth of 120 nm, respectively. The slump of screen-printed solder paste is measured to compare the solder coverage on the pads after the solder process on a hot plate. A comparative study of the coverage of solder paste on a fresh polished pad, a pad stored for two weeks, and femtosecond laser-structured pads reveals the improved wettability of structured pads even after storage. In addition, leaded and lead-free solder pads are compared with the particular advantages of the solder-free pad when periodically laser structured. Our findings are attributed to two major effects: namely, the increase of the surface area and the improved surface chemical wettability. Overall, the application of laser-induced periodic surface structures helps to reduce the demand of lead-based solder in the electronic industry and provides a feasible method for a fast and spatial selective way of surface functionalization.


Small ◽  
2021 ◽  
pp. 2104202
Author(s):  
Changkun Song ◽  
Baoyun Ye ◽  
Jianyong Xu ◽  
Junhong Chen ◽  
Wei Shi ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3326
Author(s):  
Jörn Bonse ◽  
Stephan Gräf

Laser-induced periodic surface structures (LIPSS) are a simple and robust route for the nanostructuring of solids that can create various surface functionalities featuring applications in optics, medicine, tribology, energy technologies, etc. While the current laser technologies already allow surface processing rates at the level of m2/min, industrial applications of LIPSS are sometimes hampered by the complex interplay between the nanoscale surface topography and the specific surface chemistry, as well as by limitations in controlling the processing of LIPSS and in the long-term stability of the created surface functions. This Perspective article aims to identify some open questions about LIPSS, discusses the pending technological limitations, and sketches the current state of theoretical modelling. Hereby, we intend to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry.


Author(s):  
Yuta Yanagisawa ◽  
Shigeki MATSUO

Abstract To study the formation mechanism of laser-induced periodic surface structures, we carried out a pulse-by-pulse optical observation of laser-induced surface morphological changes on thin glass substrates. We adopted oil-immersion microscopy, which has a higher spatial resolution than dry microscopy, and the laser was irradiated from the air side. A thin transparent substrate of coverslip was used as the sample. When a scratched coverslip was irradiated with focused subnanosecond laser pulses of 1.064 µm wavelength, periodic structures occasionally appeared in the flat region near the focus, with a period of about 0.55 μm.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7330
Author(s):  
Stella Maragkaki ◽  
Panagiotis C. Lingos ◽  
George D. Tsibidis ◽  
George Deligeorgis ◽  
Emmanuel Stratakis

The efficiency of light coupling to surface plasmon polariton (SPP) represents a very important issue in plasmonics and laser fabrication of topographies in various solids. To illustrate the role of pre-patterned surfaces and impact of laser polarisation in the excitation of electromagnetic modes and periodic pattern formation, Nickel surfaces are irradiated with femtosecond laser pulses of polarisation perpendicular or parallel to the orientation of the pre-pattern ridges. Experimental results indicate that for polarisation parallel to the ridges, laser induced periodic surface structures (LIPSS) are formed perpendicularly to the pre-pattern with a frequency that is independent of the distance between the ridges and periodicities close to the wavelength of the excited SPP. By contrast, for polarisation perpendicular to the pre-pattern, the periodicities of the LIPSS are closely correlated to the distance between the ridges for pre-pattern distance larger than the laser wavelength. The experimental observations are interpreted through a multi-scale physical model in which the impact of the interference of the electromagnetic modes is revealed.


Sign in / Sign up

Export Citation Format

Share Document