multiple drugs
Recently Published Documents


TOTAL DOCUMENTS

6012
(FIVE YEARS 4008)

H-INDEX

44
(FIVE YEARS 10)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Navchetan Kaur ◽  
Boris Oskotsky ◽  
Atul J. Butte ◽  
Zicheng Hu

Abstract Background Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for SARS-CoV-2. It plays critical roles in both the transmission and the pathogenesis of COVID-19. Comprehensive profiling of ACE2 expression patterns could reveal risk factors of severe COVID-19 illness. While the expression of ACE2 in healthy human tissues has been well characterized, it is not known which diseases and drugs might be associated with ACE2 expression. Results We develop GENEVA (GENe Expression Variance Analysis), a semi-automated framework for exploring massive amounts of RNA-seq datasets. We apply GENEVA to 286,650 publicly available RNA-seq samples to identify any previously studied experimental conditions that could be directly or indirectly associated with ACE2 expression. We identify multiple drugs, genetic perturbations, and diseases that are associated with the expression of ACE2, including cardiomyopathy, HNF1A overexpression, and drug treatments with RAD140 and itraconazole. Our joint analysis of seven datasets confirms ACE2 upregulation in all cardiomyopathy categories. Using electronic health records data from 3936 COVID-19 patients, we demonstrate that patients with pre-existing cardiomyopathy have an increased mortality risk than age-matched patients with other cardiovascular conditions. GENEVA is applicable to any genes of interest and is freely accessible at http://genevatool.org. Conclusions This study identifies multiple diseases and drugs that are associated with the expression of ACE2. The effect of these conditions should be carefully studied in COVID-19 patients. In particular, our analysis identifies cardiomyopathy patients as a high-risk group, with increased ACE2 expression in the heart and increased mortality after SARS-COV-2 infection.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sara Ahmed ◽  
Alyssa Manning ◽  
Lindsay Flint ◽  
Divya Awasthi ◽  
Yulia Ovechkina ◽  
...  

Mycobacterium tuberculosis is an important global pathogen for which new drugs are urgently required. The ability of the organism to survive and multiply within macrophages may contribute to the lengthy treatment regimen with multiple drugs that are required to cure the infection. We screened the MyriaScreen II diversity library of 10,000 compounds to identify novel inhibitors of M. tuberculosis growth within macrophage-like cells using high content analysis. Hits were selected which inhibited the intramacrophage growth of M. tuberculosis without significant cytotoxicity to infected macrophages. We selected and prioritized compound series based on their biological and physicochemical properties and the novelty of the chemotypes. We identified five chemical classes of interest and conducted limited catalog structure-activity relationship studies to determine their tractability. We tested activity against intracellular and extracellular M. tuberculosis, as well as cytoxicity against murine RAW264.7 and human HepG2 cells. Benzene amide ethers, thiophene carboxamides and thienopyridines were only active against intracellular bacteria, whereas the phenylthiourea series was also active against extracellular bacteria. One member of a phenyl pyrazole series was moderately active against extracellular bacteria. We identified the benzene amide ethers as an interesting series for further work. These new compound classes serve as starting points for the development of novel drugs to target intracellular M. tuberculosis.


2022 ◽  
Vol 1887 (1) ◽  
pp. 493-493
Keyword(s):  

2022 ◽  
Vol 1887 (1) ◽  
pp. 497-497
Keyword(s):  

2022 ◽  
Vol 1887 (1) ◽  
pp. 505-505
Keyword(s):  

2022 ◽  
Vol 1887 (1) ◽  
pp. 502-502
Keyword(s):  

2022 ◽  
Vol 1888 (1) ◽  
pp. 247-247
Keyword(s):  

2022 ◽  
Vol 1887 (1) ◽  
pp. 506-506
Keyword(s):  

2022 ◽  
Vol 1888 (1) ◽  
pp. 244-244
Keyword(s):  

2022 ◽  
Vol 1889 (1) ◽  
pp. 217-217
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document