diagonally dominant matrices
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 2)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 186
Author(s):  
Yating Li ◽  
Yaqiang Wang

Based on the Schur complement, some upper bounds for the infinity norm of the inverse of generalized doubly strictly diagonally dominant matrices are obtained. In addition, it is shown that the new bound improves the previous bounds. Numerical examples are given to illustrate our results. By using the infinity norm bound, a lower bound for the smallest singular value is given.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yating Li ◽  
Xiaoyong Chen ◽  
Yi Liu ◽  
Lei Gao ◽  
Yaqiang Wang

In this paper, the question of when the subdirect sum of two doubly strictly diagonally dominant (DSDDs) matrices is addressed. Some sufficient conditions are given, and these sufficient conditions only depend on the elements of the given matrices. Moreover, examples are presented to illustrate the corresponding results.


Author(s):  
Yuzhu Wang ◽  
Akihiro Tanaka ◽  
Akiko Yoshise

AbstractWe develop techniques to construct a series of sparse polyhedral approximations of the semidefinite cone. Motivated by the semidefinite (SD) bases proposed by Tanaka and Yoshise (Ann Oper Res 265:155–182, 2018), we propose a simple expansion of SD bases so as to keep the sparsity of the matrices composing it. We prove that the polyhedral approximation using our expanded SD bases contains the set of all diagonally dominant matrices and is contained in the set of all scaled diagonally dominant matrices. We also prove that the set of all scaled diagonally dominant matrices can be expressed using an infinite number of expanded SD bases. We use our approximations as the initial approximation in cutting plane methods for solving a semidefinite relaxation of the maximum stable set problem. It is found that the proposed methods with expanded SD bases are significantly more efficient than methods using other existing approximations or solving semidefinite relaxation problems directly.


Sign in / Sign up

Export Citation Format

Share Document