phase contrast image
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ohsung Oh ◽  
Youngju Kim ◽  
Daeseung Kim ◽  
Daniel. S. Hussey ◽  
Seung Wook Lee

Abstract Grating interferometry is a promising technique to obtain differential phase contrast images with illumination source of low intrinsic transverse coherence. However, retrieving the phase contrast image from the differential phase contrast image is difficult due to the accumulated noise and artifacts from the differential phase contrast image (DPCI) reconstruction. In this paper, we implemented a deep learning-based phase retrieval method to suppress these artifacts. Conventional deep learning based denoising requires noisy-clean image pair, but it is not feasible to obtain sufficient number of clean images for grating interferometry. In this paper, we apply a recently developed neural network called Noise2Noise (N2N) that uses noise-noise image pairs for training. We obtained many differential phase contrast images through combination of phase stepping images, and these were used as noise input/target pairs for N2N training. The application of the N2N network to simulated and measured DPCI showed that the phase contrast images were retrieved with strongly suppressed phase retrieval artifacts. These results can be used in grating interferometer applications which uses phase stepping method.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 23120-23126
Author(s):  
Jianheng Huang ◽  
Xin Liu ◽  
Yaohu Lei

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Tang ◽  
Yu Liu ◽  
Chao Zhang ◽  
Juan Cheng ◽  
Hu Peng ◽  
...  

In the field of cell and molecular biology, green fluorescent protein (GFP) images provide functional information embodying the molecular distribution of biological cells while phase-contrast images maintain structural information with high resolution. Fusion of GFP and phase-contrast images is of high significance to the study of subcellular localization, protein functional analysis, and genetic expression. This paper proposes a novel algorithm to fuse these two types of biological images via generative adversarial networks (GANs) by carefully taking their own characteristics into account. The fusion problem is modelled as an adversarial game between a generator and a discriminator. The generator aims to create a fused image that well extracts the functional information from the GFP image and the structural information from the phase-contrast image at the same time. The target of the discriminator is to further improve the overall similarity between the fused image and the phase-contrast image. Experimental results demonstrate that the proposed method can outperform several representative and state-of-the-art image fusion methods in terms of both visual quality and objective evaluation.


2018 ◽  
Vol 20 (5) ◽  
pp. 055605 ◽  
Author(s):  
Mario A Beltran ◽  
David M Paganin ◽  
Daniele Pelliccia

2016 ◽  
Vol 61 (16) ◽  
pp. 5942-5955 ◽  
Author(s):  
Daniele Pelliccia ◽  
Jeffrey C Crosbie ◽  
Kieran G Larkin

Sign in / Sign up

Export Citation Format

Share Document