higher spin symmetry
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 5)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Joao A. Silva

Abstract We compute spinning four point functions in the quasi-fermionic three dimensional conformal field theory with slightly broken higher spin symmetry at finite t’Hooft coupling. More concretely, we obtain a formula for $$ \left\langle {j}_s{j}_{\tilde{0}}{j}_{\tilde{0}}{j}_{\tilde{0}}\right\rangle $$ j s j 0 ˜ j 0 ˜ j 0 ˜ , where js is a higher spin current and $$ {j}_{\tilde{0}} $$ j 0 ˜ is the scalar single trace operator. Our procedure consists in writing a plausible ansatz in Mellin space and using crossing, pseudo-conservation and Regge boundedness to fix all undetermined coefficients. Our method can potentially be generalised to compute all spinning four point functions in these theories.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Sachin Jain ◽  
Renjan Rajan John ◽  
Vinay Malvimat

Abstract In this work, building up on [1] we present momentum space Ward identities related to broken higher spin symmetry as an alternate approach to computing correlators of spinning operators in interacting theories such as the quasi-fermionic and quasi-bosonic theories. The direct Feynman diagram approach to computing correlation functions is intricate and in general has been performed only in specific kinematic regimes. We use higher spin equations to obtain the parity even and parity odd contributions to two-, three- and four-point correlators involving spinning and scalar operators in a general kinematic regime, and match our results with existing results in the literature for cases where they are available.One of the interesting facts about higher spin equations is that one can use them away from the conformal fixed point. We illustrate this by considering mass deformed free boson theory and solving for two-point functions of spinning operators using higher spin equations.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Damon J. Binder ◽  
Shai M. Chester ◽  
Max Jerdee

Abstract We consider four-point functions of operators in the stress tensor multiplet of the 3d $$ \mathcal{N} $$ N = 6 U(N)k× U(N + M)−k or SO(2)2k× USp(2 + 2M)−k ABJ theories in the limit where M and k are taken to infinity while N and λ ∼ M/k are held fixed. In this limit, these theories have weakly broken higher spin symmetry and are holographically dual to $$ \mathcal{N} $$ N = 6 higher spin gravity on AdS4, where λ is dual to the bulk parity breaking parameter. We use the weakly broken higher spin Ward identities, superconformal Ward identities, and the Lorentzian inversion formula to fully determine the tree level stress tensor multiplet four-point function up to two free parameters. We then use supersymmetric localization to fix both parameters for the ABJ theories in terms of λ, so that our result for the tree level correlator interpolates between the free theory at λ = 0 and a parity invariant interacting theory at λ = 1/2. We compare the CFT data extracted from this correlator to a recent numerical bootstrap conjecture for the exact spectrum of U(1)2M× U(1 + M)−2M ABJ theory (i.e. λ = 1/2 and N = 1), and find good agreement in the higher spin regime.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Zhijin Li

Abstract Three-dimensional conformal field theories (CFTs) with slightly broken higher spin symmetry provide an interesting laboratory to study general properties of CFTs and their roles in the AdS/CFT correspondence. In this work we compute the planar four-point functions at arbitrary ’t Hooft coupling λ in the CFTs with slightly broken higher spin symmetry. We use a bootstrap approach based on the approximate higher spin Ward identity. We show that the bootstrap equation is separated into two parts with opposite parity charges, and it leads to a recursion relation for the λ expansions of the correlation functions. The λ expansions terminate at order λ2 and the solutions are exact in λ. Our work generalizes the approach proposed by Maldacena and Zhiboedov to four-point correlators, and it amounts to an on-shell study for the 3D Chern-Simons vector models and their holographic duals in AdS4. Besides, we show that the same results can also be obtained rather simply from bosonization duality of 3D Chern-Simons vector models. The odd term at order O(λ) in the spinning four-point function relates to the free boson correlator through a Legendre transformation. This provides new evidence on the 3D bosonization duality at the spinning four-point function level. We expect this work can be generalized to a complete classification of general four-point functions of single trace currents.


Sign in / Sign up

Export Citation Format

Share Document