scholarly journals Bootstrapping conformal four-point correlators with slightly broken higher spin symmetry and 3D bosonization

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Zhijin Li

Abstract Three-dimensional conformal field theories (CFTs) with slightly broken higher spin symmetry provide an interesting laboratory to study general properties of CFTs and their roles in the AdS/CFT correspondence. In this work we compute the planar four-point functions at arbitrary ’t Hooft coupling λ in the CFTs with slightly broken higher spin symmetry. We use a bootstrap approach based on the approximate higher spin Ward identity. We show that the bootstrap equation is separated into two parts with opposite parity charges, and it leads to a recursion relation for the λ expansions of the correlation functions. The λ expansions terminate at order λ2 and the solutions are exact in λ. Our work generalizes the approach proposed by Maldacena and Zhiboedov to four-point correlators, and it amounts to an on-shell study for the 3D Chern-Simons vector models and their holographic duals in AdS4. Besides, we show that the same results can also be obtained rather simply from bosonization duality of 3D Chern-Simons vector models. The odd term at order O(λ) in the spinning four-point function relates to the free boson correlator through a Legendre transformation. This provides new evidence on the 3D bosonization duality at the spinning four-point function level. We expect this work can be generalized to a complete classification of general four-point functions of single trace currents.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Joao A. Silva

Abstract We compute spinning four point functions in the quasi-fermionic three dimensional conformal field theory with slightly broken higher spin symmetry at finite t’Hooft coupling. More concretely, we obtain a formula for $$ \left\langle {j}_s{j}_{\tilde{0}}{j}_{\tilde{0}}{j}_{\tilde{0}}\right\rangle $$ j s j 0 ˜ j 0 ˜ j 0 ˜ , where js is a higher spin current and $$ {j}_{\tilde{0}} $$ j 0 ˜ is the scalar single trace operator. Our procedure consists in writing a plausible ansatz in Mellin space and using crossing, pseudo-conservation and Regge boundedness to fix all undetermined coefficients. Our method can potentially be generalised to compute all spinning four point functions in these theories.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Damon J. Binder ◽  
Shai M. Chester ◽  
Max Jerdee ◽  
Silviu S. Pufu

Abstract We study the space of 3d $$ \mathcal{N} $$ N = 6 SCFTs by combining numerical bootstrap techniques with exact results derived using supersymmetric localization. First we derive the superconformal block decomposition of the four-point function of the stress tensor multiplet superconformal primary. We then use supersymmetric localization results for the $$ \mathcal{N} $$ N = 6 U(N)k × U(N + M)−k Chern-Simons-matter theories to determine two protected OPE coefficients for many values of N, M, k. These two exact inputs are combined with the numerical bootstrap to compute precise rigorous islands for a wide range of N, k at M = 0, so that we can non-perturbatively interpolate between SCFTs with M-theory duals at small k and string theory duals at large k. We also present evidence that the localization results for the U(1)2M × U (1 + M)−2M theory, which has a vector-like large-M limit dual to higher spin theory, saturates the bootstrap bounds for certain protected CFT data. The extremal functional allows us to then conjecturally reconstruct low-lying CFT data for this theory.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Alexey Sharapov ◽  
Evgeny Skvortsov

Abstract We give a complete classification of dynamical invariants in 3d and 4d Higher Spin Gravity models, with some comments on arbitrary d. These include holographic correlation functions, interaction vertices, on-shell actions, conserved currents, surface charges, and some others. Surprisingly, there are a good many conserved p-form currents with various p. The last fact, being in tension with ‘no nontrivial conserved currents in quantum gravity’ and similar statements, gives an indication of hidden integrability of the models. Our results rely on a systematic computation of Hochschild, cyclic, and Chevalley-Eilenberg cohomology for the corresponding higher spin algebras. A new invariant in Chern-Simons theory with the Weyl algebra as gauge algebra is also presented.


1992 ◽  
Vol 70 (5) ◽  
pp. 301-304 ◽  
Author(s):  
D. G. C. McKeon

We investigate a three-dimensional gauge theory modeled on Chern–Simons theory. The Lagrangian is most compactly written in terms of a two-index tensor that can be decomposed into fields with spins zero, one, and two. These all mix under the gauge transformation. The background-field method of quantization is used in conjunction with operator regularization to compute the real part of the two-point function for the scalar field.


2005 ◽  
Vol 2005 (08) ◽  
pp. 088-088 ◽  
Author(s):  
Massimo Bianchi ◽  
Paul J Heslop ◽  
Fabio Riccioni

2004 ◽  
Vol 2004 (07) ◽  
pp. 058-058 ◽  
Author(s):  
N Beisert ◽  
M Bianchi ◽  
J.F Morales ◽  
H Samtleben

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Alfredo Pérez ◽  
Ricardo Troncoso

Abstract It has been recently argued that the averaging of free CFT’s over the Narain lattice can be holographically described through a Chern-Simons theory for U (1)D×U (1)D with a precise prescription to sum over three-dimensional handlebodies. We show that a gravitational dual of these averaged CFT’s would be provided by Einstein gravity on AdS3 with U (1)D−1× U (1)D−1 gauge fields, endowed with a precise set of boundary conditions closely related to the “soft hairy” ones. Gravitational excitations then go along diagonal SL (2, ℝ) generators, so that the asymptotic symmetries are spanned by U (1)D× U (1)D currents. The stress-energy tensor can then be geometrically seen as composite of these currents through a twisted Sugawara construction. Our boundary conditions are such that for the reduced phase space, there is a one-to-one map between the configurations in the gravitational and the purely abelian theories. The partition function in the bulk could then also be performed either from a non-abelian Chern-Simons theory for two copies of SL (2, ℝ) × U (1)D−1 generators, or formally through a path integral along the family of allowed configurations for the metric. The new boundary conditions naturally accommodate BTZ black holes, and the microscopic number of states then appears to be manifestly positive and suitably accounted for from the partition function in the bulk. The inclusion of higher spin currents through an extended twisted Sugawara construction in the context of higher spin gravity is also briefly addressed.


1987 ◽  
Vol 177 (1) ◽  
pp. 63-112 ◽  
Author(s):  
E.S. Fradkin ◽  
M.A. Vasiliev

Sign in / Sign up

Export Citation Format

Share Document