spectrum area
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 18)

H-INDEX

8
(FIVE YEARS 2)

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1318
Author(s):  
Songtao Yu ◽  
Yuxian Ke ◽  
Hongwei Deng ◽  
Guanglin Tian ◽  
Junren Deng

Freeze-thaw weathering changes the pore structure, permeability, and groundwater transportation of rock material. Meanwhile, the change in rock material structure deduced by frost heaving deteriorates mechanical properties of rock material, leading to instability and insecurity of mine slopes in cold regions. In this paper, rock-like specimens containing prefabricated cracks at different angles and having undergone various freeze-thaw cycles are used as the object. Their pore structure, compressive mechanical properties, strain energies, failure characteristics, and the connection between pore structure and mechanical properties are analyzed. Results show that the porosity, spectrum area of mesopores, and spectrum area of macropores increase with the increase in freeze-thaw cycles, while crack angle shows no obvious influence on pore structure. Peak stress and elastic modulus drop with the increase in freeze-thaw cycles, while peak strain shows an increasing trend. Peak stress and elastic modulus decrease in the beginning, and then increase with the increase in crack angle, while peak strain shows a reverse trend. Elastic strain energy and pre-peak strain energy drop with the increase in freeze-thaw cycles. Elastic strain energy decreases first, and then increases with the increase in crack angle. The correlation between the spectrum area of macropores and elastic modulus is the strongest among different pores. Elastic modulus and peak stress decrease with the increase in macropore spectrum area, and peak strain increases with the increase in macropore spectrum area.


2021 ◽  
Vol 10 (19) ◽  
Author(s):  
Brooke Bessen ◽  
Jason Coult ◽  
Jennifer Blackwood ◽  
Cindy H. Hsu ◽  
Peter Kudenchuk ◽  
...  

Background The mechanism by which bystander cardiopulmonary resuscitation (CPR) improves survival following out‐of‐hospital cardiac arrest is unclear. We hypothesized that ventricular fibrillation (VF) waveform measures, as surrogates of myocardial physiology, mediate the relationship between bystander CPR and survival. Methods and Results We performed a retrospective cohort study of adult, bystander‐witnessed patients with out‐of‐hospital cardiac arrest with an initial rhythm of VF who were treated by a metropolitan emergency medical services system from 2005 to 2018. Patient, resuscitation, and outcome variables were extracted from emergency medical services and hospital records. A total of 3 VF waveform measures (amplitude spectrum area, peak frequency, and median peak amplitude) were computed from a 3‐second ECG segment before the initial shock. Multivariable logistic regression estimated the association between bystander CPR and survival to hospital discharge adjusted for Utstein elements. Causal mediation analysis quantified the proportion of survival benefit that was mediated by each VF waveform measure. Of 1069 patients, survival to hospital discharge was significantly higher among the 814 patients who received bystander CPR than those who did not (0.52 versus 0.43, respectively; P <0.01). The multivariable‐adjusted odds ratio for bystander CPR and survival was 1.6 (95% CI, 1.2, 2.1), and each VF waveform measure attenuated this association. Depending on the specific waveform measure, the proportion of mediation varied: 53% for amplitude spectrum area, 31% for peak frequency, and 29% for median peak amplitude. Conclusions Bystander CPR correlated with more robust initial VF waveform measures, which in turn mediated up to one‐half of the survival benefit associated with bystander CPR. These results provide insight into the biological mechanism of bystander CPR in VF out‐of‐hospital cardiac arrest.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1967
Author(s):  
Eugene Bukhanov ◽  
Alexandr V. Shabanov ◽  
Mikhail N. Volochaev ◽  
Svetlana A. Pyatina

The features of light propagation in plant leaves depend on the long-period ordering in chloroplasts and the spectral characteristics of pigments. This work demonstrates a method of determining the hidden ordered structure. Transmission spectra have been determined using transfer matrix method. A band gap was found in the visible spectral range. The effective refractive index and dispersion in the absorption spectrum area of chlorophyll were taken into account to show that the density of photon states increases, while the spectrum shifts towards the wavelength range of effective photosynthesis.


2021 ◽  
Vol 13 (14) ◽  
pp. 2798
Author(s):  
Qi Chen ◽  
Zhifang Zhao ◽  
Jiaxi Zhou ◽  
Min Zeng ◽  
Jisheng Xia ◽  
...  

The Pulang porphyry copper deposit (PCD), one of the main potential areas for copper resource exploration in China, exhibits typical porphyry alteration zoning. However, further investigation of the indicative significance of alteration minerals, additional insight into metallogenic characteristics, and prospecting guidelines continue to be challenging. In this study, ASTER and WorldView-3 data were used to map hydrothermal alteration minerals by employing band ratios, principal component analysis, and spectrum-area techniques; and subsequently, the indication significance of alteration minerals was studied in-depth. The following new insights into the metallogenic structure and spatial distribution of alteration zoning in Pulang PCD were obtained and verified. (1) A new NE trending normal fault, passing through the northeast of Pulang PCD, was discovered. (2) Two mineralization alteration centers, exhibiting alteration zoning characteristics of potassic-silicified, phyllic, and propylitic zones from the inside to the outside, were observed on both sides of the fault. (3) At the junction of the redivided potassic-silicification and phyllic zones, favorable prospecting potential areas were delineated. This study shows that the spectral/multi-sensor satellite data are valuable and cost-effective tools for the preliminary stages of porphyry copper exploration in inaccessible and remote areas around the world.


2021 ◽  
pp. 1-6 ◽  
Author(s):  
Behnam Sadeghi
Keyword(s):  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jiajia Liu ◽  
Yingxiang Fang ◽  
Gaini Jia ◽  
Shouqi Chen ◽  
Jianmin Hu

The microscopic pore structure of coal affects the content of adsorbed gas. The microstructure of coal sample before and after loading is different, which will affect the adsorption and permeability of coal seam gas. In order to study this difference, the authors carried out mercury intrusion experiments on coal containing different coal samples and used nondestructive nuclear magnetic resonance (NMR) techniques, scanning electron microscopy, and transmission electron microscopy, to study the microstructure of coal samples before and after loading. The experimental results show that the pores of coal samples are mainly micropores and small pores, and the mesopores and macropores are relatively few. The T2 spectrum area of the coal sample is significantly increased after loading, and the parallel-layer coal samples’ T2 spectrum area is 46735, which is 9112 more than the vertical layer coal samples. The T2 spectrum of the vertical coalbed of saturated water samples shows a three-peak shape, the peak of the T2 spectrum is 12692, and the parallel bedding shows a bimodal morphology. The peak area of the T2 spectrum is 11277. The permeability of the parallel bedding coal sample is good, and the coal sample exhibits anisotropic properties. The pores and cracks of the coal samples increased after loading, and the localized area of the coal sample collapsed and formed a fracture zone, which was not conducive to the occurrence of coal seam gas. Further explanation of the changes in the permeability of the coal sample before and after loading will affect the gas storage and transportation.


Sign in / Sign up

Export Citation Format

Share Document