scholarly journals A partially sex‐reversed giant kelp sheds light into the mechanisms of sexual differentiation in a UV sexual system

2021 ◽  
Author(s):  
Dieter G. Müller ◽  
Enora Gaschet ◽  
Olivier Godfroy ◽  
Josselin Gueno ◽  
Guillaume Cossard ◽  
...  
2021 ◽  
Author(s):  
Dieter Mueller ◽  
Enora Gachet ◽  
Olivier Godfroy ◽  
Josselin Gueno ◽  
Guillaume Cossard ◽  
...  

In UV sexual systems, sex is determined during the haploid phase of the life cycle and males have a V chromosome whereas females have a U chromosome. Previous work in the brown algal model Ectocarpus revealed that the V chromosome has a dominant role in male sex determination and suggested that the female developmental program may occur by default, triggered in the absence of the male master sex determination gene(s). Here, we describe the identification of a genetically male giant kelp strain presenting phenotypic features typical of a female, despite lacking the U-specific region. The conversion to the female developmental program is however incomplete, because gametes of this feminised male are unable to produce the sperm-attracting pheromone lamoxirene. We identify the transcriptomic patterns underlying the male and female specific developmental programs, and reveal the faster evolutionary rates of male-biased genes compared to female-biased and unbiased genes. Moreover, we show that the phenotypic feminisation of the variant strain is associated with both feminisation and de-masculinisation of gene expression patterns. Importantly, the feminisation phenotype was associated with the dramatic downregulation of two V-specific genes including a candidate sex-determining gene on the V-specific region. Our results reveal the transcriptional changes associated with sexual differentiation in a UV system with marked sexual dimorphism, and contribute to disentangling the role of sex-linked genes and autosomal gene expression in the initiation of the male and female developmental programs. Overall, the data presented here imply that the U-specific region in the giant kelp is not required to initiate the female developmental program, but is critical to produce fully functional eggs, arguing against the idea that female is the default sex in this species.


Author(s):  
Darcy B. Kelley ◽  
Martha L. Tobias ◽  
Mark Ellisman

Brain and muscle are sexually differentiated tissues in which masculinization is controlled by the secretion of androgens from the testes. Sensitivity to androgen is conferred by the expression of an intracellular protein, the androgen receptor. A central problem of sexual differentiation is thus to understand the cellular and molecular basis of androgen action. We do not understand how hormone occupancy of a receptor translates into an alteration in the developmental program of the target cell. Our studies on sexual differentiation of brain and muscle in Xenopus laevis are designed to explore the molecular basis of androgen induced sexual differentiation by examining how this hormone controls the masculinization of brain and muscle targets.Our approach to this problem has focused on a highly androgen sensitive, sexually dimorphic neuromuscular system: laryngeal muscles and motor neurons of the clawed frog, Xenopus laevis. We have been studying sex differences at a synapse, the laryngeal neuromuscular junction, which mediates sexually dimorphic vocal behavior in Xenopus laevis frogs.


2021 ◽  
Vol 657 ◽  
pp. 59-71
Author(s):  
BA Beckley ◽  
MS Edwards

The forest-forming giant kelp Macrocystis pyrifera and the communities it supports have been decreasing across their native ranges in many parts of the world. The sudden removal of giant kelp canopies by storms increases space and light for the colonization by understory macroalgae, such as Desmarestia herbacea, which can inhibit M. pyrifera recovery and alter local community composition. Understanding the mechanisms by which algae such as D. herbacea interact with M. pyrifera can provide insight into patterns of kelp forest recovery following these disturbances and can aid in predicting future community structure. This study experimentally tested the independent and combined effects of two likely competitive mechanisms by which D. herbacea might inhibit recovery of M. pyrifera in the Point Loma kelp forest in San Diego, California (USA). Specifically, we conducted field experiments to study the individual and combined effects of shade and scour by D. herbacea on the survival of M. pyrifera microscopic life stages, and the recruitment, survival, and growth of its young sporophytes. Our results show that scour had the strongest negative effect on the survival of M. pyrifera microscopic life stages and recruitment, but shade and scour both adversely affected survival and growth of these sporophytes as they grew larger. Canopy-removing storms are increasing in frequency and intensity, and this change could facilitate the rise of understory species, like D. herbacea, which might alter community succession and recovery of kelp forests.


1984 ◽  
Vol 104 (4_Supplb) ◽  
pp. S39-S40 ◽  
Author(s):  
G. FLÜGGE ◽  
E. FUCHS ◽  
W. WUTTKE

Sign in / Sign up

Export Citation Format

Share Document