laboratory model test
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 13)

H-INDEX

4
(FIVE YEARS 1)

2022 ◽  
Vol 45 (2) ◽  
pp. 20210031
Author(s):  
Zihang Dai ◽  
Zhihua Qiu ◽  
Hengyang Li ◽  
Caijin Lu ◽  
Jianhui Yang

2021 ◽  
Author(s):  
Ping Xu ◽  
Danhui Xi

Abstract According to the existing practical engineering data, the settlement curve of shield tunnel with small curvature radius is obviously different from that of straight tunnel, so using Peck formula to forecast the surface settlement is not applicable. This paper describes results from a series of the laboratory test based on similarity theory carried out in sandy soil. According to the test results, the characteristics of surface settlement caused by small radius tunnel excavation are summarized, and the effects of turning radius and buried depth on the surface settlement are demonstrated. Based on Gaussian formula, a method to forecast the surface settlement caused by construction of shield tunnel with small curvature radius is developed.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Longfei Xu ◽  
Weijiang Xu ◽  
Aijun Zhang ◽  
Xiaolin Weng ◽  
Gaowen Zhao ◽  
...  

Pile composite foundation can make good use of the bearing capacity of the soil and pile, which is widely used in the Chinese northwest loess area. However, the theory of pile composite foundation is far from sufficient, hindering its long-term development. Aiming at this problem, a laboratory model test of pile composite foundation in the loess area was conducted to explore the common working mechanism and variations of each bearing stage. Besides, the settlement of the single pile composite foundation was calculated by using the modified tangent modulus method, and the result was compared with the experimental data. The main results of this paper are as follows: Both in the single pile and single pile composite foundation, loading-settlement curves showed a trend of “elastic to elastoplastic to plastic,” accompanied by the appearance of plummeting point. Influenced by the pile group effect, the loading-settlement curve of the group pile composite foundation showed a slow-varying trend without an obvious breakdown point. Pile axis stress increased with the growth of upper load. At the beginning of loading, the pile axis stress indicated such a distribution that stress on both ends of the pile was larger than that in the middle of the pile. When reaching a certain load, the location of the biggest pile axis stress transferred to the pile top, and the pile axis stress decreased gradually as the pile became deep. The side friction resistance in the static load test of the single pile was always positive, whereas in the composite foundation of a single pile and a group of piles, negative side resistance appeared in the upper side of the neutral point. Pile-soil stress ratio in the depth of 12 cm changed with the upper load. The outcome calculated by the modified tangent modulus method had a relatively better consistency with experimental data if the upper load was not too large.


2020 ◽  
Vol 146 (10) ◽  
pp. 04020112 ◽  
Author(s):  
Xiongyu Hu ◽  
Chuan He ◽  
Gabriel Walton ◽  
Yong Fang ◽  
Guanghui Dai

Sign in / Sign up

Export Citation Format

Share Document