curvature radius
Recently Published Documents


TOTAL DOCUMENTS

599
(FIVE YEARS 180)

H-INDEX

19
(FIVE YEARS 5)

2022 ◽  
Vol 32 (2) ◽  
pp. 025007
Author(s):  
Shuang Chen ◽  
Zongqian Shi ◽  
Jiajia Sun ◽  
Shenli Jia ◽  
Mingjie Zhong ◽  
...  

Abstract Inertial microfluidic has been widely applied to manipulate particles or bio-sample based on the inertial lift force and Dean Vortices. This technology provides significant advantages over conventional technologies, including simple structure, high throughput and freedom from an external field. Among many inertial microfluidic systems, the straight microchannel is commonly used to produce inertial focusing, which is a phenomenon that particles or cells are aligned and separated based on their size under the influence of inertial lift force. Besides the inertial lift force, flow drag forces induced by the geometrical structures of microchannel can also affect particle focusing. Herein, a split-recombination microchannel, consisting of curved and straight channels, is proposed to focus and separate particles at high flow rate. As compared with the straight channel, the particle focusing in the split-recombination channel is greatly improved, which results from the combined effects of the inertial lift force, the curvature-induced Dean drag force and the structure of split and recombination. Moreover, the distribution of different-sized particles in designed microchannel is investigated. The results indicate that the proposed microchannel not only enhances the particle focusing but also enables the separation of different-sized particles with high throughput. Finally, it is discovered that the larger length of straight channel and curvature radius of curved channel can result in a more efficient particle separation. Another important feature of designed split-recombination microchannel is that it can be arranged in parallel to handle large-volume samples, holding great potential in lab-on-a-chip applications.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012040
Author(s):  
Kai Chen ◽  
Shuyou Wang ◽  
Yawei Wang ◽  
Ze Shi

Abstract In order to study the forming law of rod jet formed by shaped charge under rigid boundary constraint, ANSYS/LSDYNA finite element software is used to simulate the forming process of rod jet with ALE essential boundary, and the influence of structural parameters of shaped charge on rod jet forming is studied. The results show that compared with the free boundary constraint, the head velocity of rod jet increases by 63.5 % and the tail velocity increases by 59.3 % under the rigid boundary constraint. The head velocity and length-diameter ratio of rod jet decrease with the increase of the outside curvature radius of the liner, the thickness of the liner central position and the variable ratio of wall thickness. Furthermore, the tail velocity increases with the increase of the outside curvature radius of the liner, and decreases with the increase of the thickness of the liner central position and the variable ratio of wall thickness.


2021 ◽  
Vol 44 (4) ◽  
pp. E46-54
Author(s):  
Michael Deng ◽  
Lina Lan ◽  
Tianhui Chen ◽  
Min Zhang ◽  
Jiahui Chen ◽  
...  

Purpose: To evaluate the distribution of the posterior-anterior corneal radius ratio (B/F ratio; posterior corneal radius/anterior corneal radius) in patients without corneal abnormalities, and to investigate which parameters affect this ratio. Methods: Five thousand eyes from 5,000 patients who underwent cataract surgery were recruited to this study. We explored the linear relationship between B/F ratio and 13 variables using Principal Component-Multivariate Linear Regression Analysis. Results: The B/F ratio was negatively correlated with the difference between simulated keratometry (SimK) and true net power (TNP), central corneal thickness, spherical aberration (SA), and posterior corneal astigmatism and positively correlated with posterior corneal radius, corneal posterior surface, axial length (AL) and anterior corneal radius. Several variables (central corneal thickness, difference between SimK and TNP and asphericity coefficient (Q-value) of the posterior corneal surface) had the highest loading on the final score. B/F ratio reflects the refractive state and anatomical structure of the cornea: thus, higher B/F ratios were associated with larger posterior corneal surface curvature radius, longer axial length, thinner central corneal thickness, lower high order aberrations of the cornea and SA, and the numerical difference between simK and TNP gradually reduced. In clinical practice, for patients with lower B/F ratio, special care should be taken in the choice of system used for intraocular lens (IOL) measurements.


Author(s):  
Oleksandr Ustynenko ◽  
Nickita Levin ◽  
Oleksiy Bondarenko ◽  
Miroslav Bošanský ◽  
Roman Protasov ◽  
...  

Reducing the mass and dimensions of gears is an actual task of modern mechanical engineering. One of the perspective ways to solve it is the use of gearing with a convex-concave contact of the teeth. Therefore, the study is devoted to the development of methods for the optimal design of cylindrical gears with convex-concave contact of the working surfaces. Optimality criteria: minimum contact stresses and (or) minimum relative sliding velocities, taking into account design, geometrical and technological constraints. C-C gearing was chosen as the object of research. It was proposed by the Slovak scientists M. Boshanski and M. Veresh. An objective function is constructed for the case of minimizing contact stresses. The optimality criterion is formulated as follows: contact stresses σH in the mesh must take the minimum possible value when all constraints are met. An objective function is also constructed for the case of minimizing the relative sliding velocities of profiles. The optimality criterion is formulated as follows: the relative sliding s velocities of profiles λ at the extreme points of mesh must take the minimum possible value when all the constraints are met. Variables planning are defined. These are pressure angle at the pole αС, the curvature radius at the upper part of contact path rkh, and the curvature radius at the lower part of contact path rkd. A method for solving the problem of optimal design is chosen. The method of probing the space of design parameters was chosen from all the variety. The points of the LPτ-sequence are used as test points. The method allows you to operate with a significant number of parameters – up to 51, provides a sufficiently large number of evenly distributed test points – up to 220. In further studies, it is planned to form a system of constraints on variables planning, to develop methods and algorithms for solving the problem. Also carry out test and verification calculations to confirm and evaluate the theoretical results. Keywords: gear, convex-concave contact, optimal design, objective function, variables planning


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7856
Author(s):  
Marek Kowalik ◽  
Piotr Paszta ◽  
Tomasz Trzepieciński ◽  
Leon Kukiełka

The article presents the original technology of the extrusion of hollow curved pipes. The curvature radius of pipe axis was obtained directly during extrusion by eccentric alignment of the annular calibration gap of the extrusion die. Theoretical relationships describing the radius of curvature of the extruded part as a function of the eccentricity e of position of the annular calibration gap in the die were developed. A die with replaceable inserts with eccentricity e equal to 1, 2, 3, 5, 7 mm was designed and fabricated. Experimental tests were carried out to extrude lead pipes with an outer diameter of 20 mm and an inner diameter of 18 mm. Measurements of the radii of the curvature of the extruded pipes were consistent with the values calculated from the developed theoretical relationships. Numerical modelling of the proposed method of extrusion in a finite element-based QForm 3D program was carried out. The finite element method (FEM) numerical calculations were carried out for lead. Numerical simulations and experimental studies have shown that, by changing the value of the eccentric gap, the radius of curvature of the extruded pipe can be controlled.


Author(s):  
Kang Liu ◽  
Wenhui Li ◽  
Peiyan Ye ◽  
Zhiming Zhang ◽  
Qiaoling Ji ◽  
...  

Force-spinning is a popular way to fabricate various fine fibers such as polymer and metal nanofibers, which are being widely employed in medical and industrial manufacture. The spinneret is the key of the device for spinning fibers, and the physical performance and morphology of the spun nanofibers are largely determined by its structure parameters. In this article, the effect of spinneret parameters on the outlet velocity is explored and the spinneret parameters are also optimized to obtain the maximum outlet velocity. The mathematical model of the solution flow in four areas is established at first, and the relationship between outlet velocity and structure parameters is acquired. This model can directly reflect the flow velocity of the solution in each area. Then, the optimal parameters of outlet diameter, bending angle, and curvature radius are obtained combined with the gray wolf algorithm (GWA). It is found that a curved-tube nozzle with a bending angle of 9.1°, nozzle diameter of 0.6 mm, and curvature radius of 10 mm can obtain the maximum outlet velocity and better velocity distribution. Subsequently, the simulation is utilized to analyze and compare the velocity situation of different parameters. Finally, the fiber of 5 wt% PEO solution is manufactured by a straight-tube nozzle and optimized bent-tube nozzle in the laboratory, and the morphology and diameter distribution were observed using a scanning electron microscope (SEM). The results showed that the outlet velocity was dramatically improved after the bent-tube parameters were optimized by GWA, and nanofibers of better surface quality could be obtained using optimized bent-tube nozzles.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2389
Author(s):  
Ruixue Zhai ◽  
Zhuangkun Zhao ◽  
Jianhao Yang ◽  
Bangbang Ma ◽  
Gaochao Yu

Pre-stretching and post-bending are the simplest loading methods for the profile stretch-bending technical process. The inner layers of the profile are stretched and then compressed during the loading process. Considering the Bauschinger effect of metal materials, a new material model called the proportional kinematic hardening model was proposed. The stretch-bending mechanical model was established under a pre-stretching and post-bending loading path. The stress and strain on the cross section of profiles were analyzed. The analytic expressions of curvature radius of the strain neutral layer and bending moment were derived after loading. The analytic method for determining the curvature radius of the geometric center layer after unloading and springback during stretch-bending was established. The rectangular section ST12 profile with symmetrical characteristics is adopted, the stretch-bending experimental results show that the new proportional kinematic hardening model is more accurate than the classical kinematic hardening model in predicting the stretch-bending springback.


Author(s):  
Wenhui Li ◽  
Kang Liu ◽  
Qinghua Guo ◽  
Zhiming Zhang ◽  
Qiaoling Ji ◽  
...  

This paper proposes an optimization paradigm for structure design of curved-tube nozzle based on genetic algorithm. First, the mathematical model is established to reveal the functional relationship between outlet power and the nozzle structure parameters. Second, genetic algorithms transform the optimization process of curved-tube nozzle into natural evolution and selection. It is found that curved-tube nozzle with bending angle of 10.8°, nozzle diameter of 0.5 mm, and curvature radius of 8 mm yields maximum outlet power. Finally, we compare the optimal result with simulations and experiments of the rotating spinning. It is found that optimized curved-tube nozzle can improve flow field distribution and reduce the jet instability, which is critical to obtain high-quality nanofibers.


2021 ◽  
Vol 923 (1) ◽  
pp. 74
Author(s):  
Jun Dai ◽  
Qingmin Zhang ◽  
Yanjie Zhang ◽  
Zhe Xu ◽  
Yingna Su ◽  
...  

Abstract In this paper, we present a multiwavelength analysis to mass draining and oscillations in a large quiescent filament prior to its successful eruption on 2015 April 28. The eruption of a smaller filament that was parallel and in close, ∼350″ proximity was observed to induce longitudinal oscillations and enhance mass draining within the filament of interest. The longitudinal oscillation with an amplitude of ∼25 Mm and ∼23 km s−1 underwent no damping during its observable cycle. Subsequently the slightly enhanced draining may have excited a eruption behind the limb, leading to a feedback that further enhanced the draining and induced simultaneous oscillations within the filament of interest. We find significant damping for these simultaneous oscillations, where the transverse oscillations proceeded with the amplitudes of ∼15 Mm and ∼14 km s−1, while the longitudinal oscillations involved a larger displacement and velocity amplitude (∼57 Mm, ∼43 km s−1). The second grouping of oscillations lasted for ∼2 cycles and had a similar period of ∼2 hr. From this, the curvature radius and transverse magnetic field strength of the magnetic dips supporting the filaments can be estimated to be ∼355 Mm and ≥34 G. The mass draining within the filament of interest lasted for ∼14 hr. The apparent velocity grew from ∼35 to ∼85 km s−1, with the transition being coincident with the occurrence of the oscillations. We conclude that two filament eruptions are sympathetic, i.e., the eruption of the quiescent filament was triggered by the eruption of the nearby smaller filament.


2021 ◽  
Vol 931 ◽  
Author(s):  
Geert Brethouwer

Fully developed turbulent flow in channels with mild to strong longitudinal curvature is studied by direct numerical simulations. The Reynolds based on the bulk mean velocity and channel half-width $\delta$ is fixed at $20\,000$ , resulting in a friction Reynolds number of approximately 1000. Four cases are considered with curvature varying from $\gamma = 2\delta /r_c = 0.033$ to 0.333, where $r_c$ is the curvature radius at the channel centre. Substantial differences between the mean wall shear stress on the convex and concave walls are already observed for $\gamma = 0.033$ . A log-law region is absent and a region with nearly constant mean angular momentum develops in the channel centre for strong curvatures. Spanwise and wall-normal velocity fluctuations are strongly amplified by curvature in the outer region of the concave channel side. Only near the walls, where curvature effects are relatively weak, do the mean velocity and velocity fluctuation profiles approximately collapse when scaled by wall units based on the local friction velocity. Budgets of the streamwise and wall-normal Reynolds-stress equations are presented and turbulence structures are investigated through visualizations and spectra. In the case with strongest curvature, the flow relaminarizes locally near the convex wall. On the concave channel side, large elongated streamwise vortices reminiscent of Taylor–Görtler vortices develop for all curvatures considered. The maximum in the premultiplied two-dimensional wall-normal energy spectrum and co-spectrum shifts towards larger scales with increasing curvature. The large scales substantially contribute to the wall-normal velocity fluctuations and momentum transport on the concave channel side.


Sign in / Sign up

Export Citation Format

Share Document