flag complexes
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 182 ◽  
pp. 105466
Author(s):  
Kai Fong Ernest Chong ◽  
Eran Nevo
Keyword(s):  

Algorithms ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Daniel Lütgehetmann ◽  
Dejan Govc ◽  
Jason P. Smith ◽  
Ran Levi

We present a new computing package Flagser, designed to construct the directed flag complex of a finite directed graph, and compute persistent homology for flexibly defined filtrations on the graph and the resulting complex. The persistent homology computation part of Flagser is based on the program Ripser by U. Bauer, but is optimised specifically for large computations. The construction of the directed flag complex is done in a way that allows easy parallelisation by arbitrarily many cores. Flagser also has the option of working with undirected graphs. For homology computations Flagser has an approximate option, which shortens compute time with remarkable accuracy. We demonstrate the power of Flagser by applying it to the construction of the directed flag complex of digital reconstructions of brain microcircuitry by the Blue Brain Project and several other examples. In some instances we perform computation of homology. For a more complete performance analysis, we also apply Flagser to some other data collections. In all cases the hardware used in the computation, the use of memory and the compute time are recorded.


Author(s):  
Daniel Luetgehetmann ◽  
Dejan Govc ◽  
Jason P. Smith ◽  
Ran Levi

We present a new computing package Flagser, designed to construct the directed flag complex of a finite directed graph, and compute persistent homology for flexibly defined filtrations on the graph and the resulting complex. The persistent homology computation part of Flagser is based on the program Ripser [2], but is optimised specifically for large computations. The construction of the directed flag complex is done in a way that allows easy parallelisation by arbitrarily many cores. Flagser also has the option of working with undirected graphs. For homology computations Flagser has an Approximate option, which shortens compute time with remarkable accuracy. We demonstrate the power of Flagser by applying it to the construction of the directed flag complex of digital reconstructions of brain microcircuitry by the Blue Brain Project and several other examples. In some instances we perform computation of homology. For a more complete performance analysis, we also apply Flagser to some other data collections. In all cases the hardware used in the computation, the use of memory and the compute time are recorded.


10.37236/6958 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Sara Faridi ◽  
Svenja Huntemann ◽  
Richard J. Nowakowski

Strong placement games (SP-games) are a class of combinatorial games whose structure allows one to describe the game via simplicial complexes. A natural question is whether well-known parameters of combinatorial games, such as "game value", appear as invariants of the simplicial complexes. This paper is the first step in that direction. We show that every simplicial complex encodes a certain type of SP-game (called an "invariant SP-game") whose ruleset is independent of the board it is played on. We also show that in the class of SP-games isomorphic simplicial complexes correspond to isomorphic game trees, and hence equal game values. We also study a subclass of SP-games corresponding to flag complexes, showing that there is always a game whose corresponding complex is a flag complex no matter which board it is played on.


2019 ◽  
Vol 531 ◽  
pp. 83-101
Author(s):  
Roy Meshulam ◽  
Shira Zerbib
Keyword(s):  

2019 ◽  
Vol 168 (3) ◽  
pp. 567-600
Author(s):  
KARIM ADIPRASITO ◽  
ERAN NEVO ◽  
MARTIN TANCER

AbstractWe analyse the asymptotic extremal growth rate of the Betti numbers of clique complexes of graphs on n vertices not containing a fixed forbidden induced subgraph H.In particular, we prove a theorem of the alternative: for any H the growth rate achieves exactly one of five possible exponentials, that is, independent of the field of coefficients, the nth root of the maximal total Betti number over n-vertex graphs with no induced copy of H has a limit, as n tends to infinity, and, ranging over all H, exactly five different limits are attained.For the interesting case where H is the 4-cycle, the above limit is 1, and we prove a superpolynomial upper bound.


2018 ◽  
Vol 12 (9) ◽  
pp. 2151-2166
Author(s):  
Daniel Erman ◽  
Jay Yang
Keyword(s):  

2018 ◽  
Vol 155 (1) ◽  
pp. 206-228
Author(s):  
Taras Panov ◽  
Stephen Theriault

If $K$ is a simplicial complex on $m$ vertices, the flagification of $K$ is the minimal flag complex $K^{f}$ on the same vertex set that contains $K$. Letting $L$ be the set of vertices, there is a sequence of simplicial inclusions $L\stackrel{}{\longrightarrow }K\stackrel{}{\longrightarrow }K^{f}$. This induces a sequence of maps of polyhedral products $(\text{}\underline{X},\text{}\underline{A})^{L}\stackrel{g}{\longrightarrow }(\text{}\underline{X},\text{}\underline{A})^{K}\stackrel{f}{\longrightarrow }(\text{}\underline{X},\text{}\underline{A})^{K^{f}}$. We show that $\unicode[STIX]{x1D6FA}f$ and $\unicode[STIX]{x1D6FA}f\circ \unicode[STIX]{x1D6FA}g$ have right homotopy inverses and draw consequences. For a flag complex $K$ the polyhedral product of the form $(\text{}\underline{CY},\text{}\underline{Y})^{K}$ is a co-$H$-space if and only if the 1-skeleton of $K$ is a chordal graph, and we deduce that the maps $f$ and $f\circ g$ have right homotopy inverses in this case.


Sign in / Sign up

Export Citation Format

Share Document