coxiella burnetii
Recently Published Documents





2022 ◽  
Vol 2022 ◽  
pp. 1-14
Muhammad Farooq ◽  
Aman Ullah Khan ◽  
Hosny El-Adawy ◽  
Katja Mertens-Scholz ◽  
Iahtasham Khan ◽  

Q fever is a worldwide distributed zoonosis caused by Coxiella burnetii, a Gram-negative bacterium. Despite existence of large amount of research data on the developments related to Q fever, no bibliometric analysis of this subject is available to our knowledge. Bibliometric studies are an essential resource to track scholarly trends and research output in a subject. This study is aimed at reporting a bibliometric analysis of publications related to Q fever (2,840 articles published in the period 1990-2019) retrieved from Science Citation Index Expanded, an online database of Clarivate Analytics Web of Science Core Collection. Data was retrieved using keywords “Q fever” or “Coxiella burnetii” in title, abstract, and author keywords to describe important research indicators such as the kind and language of articles, the most important publications, research journals and categories, authors, institutions, and the countries having the most significant contribution to this subject. Finally, the emerging areas in field of diagnosis, host range, and clinical presentation were identified. Word cluster analysis of research related to Q fever revealed that major focus of research has been on zoonosis, seroprevalence, laboratory diagnosis (mainly using ELISA and PCR), clinical manifestations (abortion and endocarditis), vectors (ticks), and hosts (sheep, goat, and cattle). This bibliometric study is intended to visualize the existing research landscape and future trends in Q fever to assist in future knowledge exchange and research collaborations.

2022 ◽  
Vol 12 ◽  
Marcel Wittwer ◽  
Philipp Hammer ◽  
Martin Runge ◽  
Peter Valentin-Weigand ◽  
Heinrich Neubauer ◽  

The Gram-negative, obligate intracellular bacterium Coxiella burnetii is the causative organism of the zoonosis Q fever and is known for its resistance toward various intra- and extracellular stressors. Infected ruminants such as cattle, sheep, and goats can shed the pathogen in their milk. Pasteurization of raw milk was introduced for the inactivation of C. burnetii and other milk-borne pathogens. Legal regulations for the pasteurization of milk are mostly based on recommendations of the Codex Alimentarius. As described there, C. burnetii is considered as the most heat-resistant non-spore-forming bacterial pathogen in milk and has to be reduced by at least 5 log10-steps during the pasteurization process. However, the corresponding inactivation data for C. burnetii originate from experiments performed more than 60 years ago. Recent scientific findings and the technological progress of modern pasteurization equipment indicate that C. burnetii is potentially more effectively inactivated during pasteurization than demanded in the Codex Alimentarius. In the present study, ultra-high heat-treated milk was inoculated with different C. burnetii field isolates and subsequently heat-treated in a pilot-plant pasteurizer. Kinetic inactivation data in terms of D- and z-values were determined and used for the calculation of heat-dependent log reduction. With regard to the mandatory 5 log10-step reduction of the pathogen, the efficacy of the established heat treatment regime was confirmed, and, in addition, a reduction of the pasteurization temperature seems feasible.

2022 ◽  
pp. 106616
Sara Santos ◽  
Diana Azenha ◽  
Cátia Oliveira ◽  
Anabela Almeida

Dimitrios Frangoulidis ◽  
Mathias C. Walter ◽  
Akinyemi M. Fasemore ◽  
Sally J. Cutler

2021 ◽  
pp. 199-203
Abdurrahman EKİCİ ◽  
Esra GÜRBÜZ ◽  
Ahmed Galip HALİDİ ◽  
Ahmet Hakan ÜNLÜ ◽  
Selahattin AYDEMİR

Pathogens ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 36
María Sánchez ◽  
Félix Valcárcel ◽  
Julia González ◽  
Marta G. González ◽  
Raquel Martín-Hernández ◽  

(1) Background: Q fever is a worldwide zoonosis caused by Coxiella burnetii that have cases reported in humans and animals almost everywhere. The aim of this study was to describe the seasonality of Coxiella burnetii in the wild rabbit (Oryctolagus cuniculus) and the tick Hyalomma lusitanicum in a meso-Mediterranean ecosystem. (2) Methods: two populations of wild rabbits that differ in whether or not they share habitat with ungulates, mainly red deer (Cervus elaphus) were sampled for a year to collect ticks, blood and vaginal or anal swabs. Presence of C. burnetii DNA in swabs and the tick H. lusitanicum was determined by PCR and serum antibodies by ELISA. (3) Results: C. burnetii DNA was detected in 47.2% of 583 rabbits, in 65.5% of sera, and in more than half of the H. lusitanicum. There were small variations according to sex and age of the rabbits but significant according to the habitat (4) Conclusions: The results indicate that C. burnetii circulates freely between wild rabbits and H. lusitanicum and the sylvatic cycle in meso-Mediterranean environments relies in the presence of wild rabbits and H. lusitanicum above all if sharing habitat with red deer.

Sign in / Sign up

Export Citation Format

Share Document