biomedical image analysis
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 24)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manuel Wiesenfarth ◽  
Annika Reinke ◽  
Bennett A. Landman ◽  
Matthias Eisenmann ◽  
Laura Aguilera Saiz ◽  
...  

AbstractGrand challenges have become the de facto standard for benchmarking image analysis algorithms. While the number of these international competitions is steadily increasing, surprisingly little effort has been invested in ensuring high quality design, execution and reporting for these international competitions. Specifically, results analysis and visualization in the event of uncertainties have been given almost no attention in the literature. Given these shortcomings, the contribution of this paper is two-fold: (1) we present a set of methods to comprehensively analyze and visualize the results of single-task and multi-task challenges and apply them to a number of simulated and real-life challenges to demonstrate their specific strengths and weaknesses; (2) we release the open-source framework challengeR as part of this work to enable fast and wide adoption of the methodology proposed in this paper. Our approach offers an intuitive way to gain important insights into the relative and absolute performance of algorithms, which cannot be revealed by commonly applied visualization techniques. This is demonstrated by the experiments performed in the specific context of biomedical image analysis challenges. Our framework could thus become an important tool for analyzing and visualizing challenge results in the field of biomedical image analysis and beyond.


Author(s):  
Shouvik Chakraborty ◽  
Sankhadeep Chatterjee ◽  
Amira S. Ashour ◽  
Kalyani Mali ◽  
Nilanjan Dey

Biomedical imaging is considered main procedure to acquire valuable physical information about the human body and some other biological species. It produces specialized images of different parts of the biological species for clinical analysis. It assimilates various specialized domains including nuclear medicine, radiological imaging, Positron emission tomography (PET), and microscopy. From the early discovery of X-rays, progress in biomedical imaging continued resulting in highly sophisticated medical imaging modalities, such as magnetic resonance imaging (MRI), ultrasound, Computed Tomography (CT), and lungs monitoring. These biomedical imaging techniques assist physicians for faster and accurate analysis and treatment. The present chapter discussed the impact of intelligent computing methods for biomedical image analysis and healthcare. Different Artificial Intelligence (AI) based automated biomedical image analysis are considered. Different approaches are discussed including the AI ability to resolve various medical imaging problems. It also introduced the popular AI procedures that employed to solve some special problems in medicine. Artificial Neural Network (ANN) and support vector machine (SVM) are active to classify different types of images from various imaging modalities. Different diagnostic analysis, such as mammogram analysis, MRI brain image analysis, CT images, PET images, and bone/retinal analysis using ANN, feed-forward back propagation ANN, probabilistic ANN, and extreme learning machine continuously. Various optimization techniques of ant colony optimization (ACO), genetic algorithm (GA), particle swarm optimization (PSO) and other bio-inspired procedures are also frequently conducted for feature extraction/selection and classification. The advantages and disadvantages of some AI approaches are discussed in the present chapter along with some suggested future research perspectives.


2020 ◽  
Vol 66 ◽  
pp. 101796 ◽  
Author(s):  
Lena Maier-Hein ◽  
Annika Reinke ◽  
Michal Kozubek ◽  
Anne L. Martel ◽  
Tal Arbel ◽  
...  

Author(s):  
Deepika Koundal ◽  
Virender Kadyan ◽  
Parul Dutta ◽  
Vatsala Anand ◽  
Shankar Aggarwal ◽  
...  

Author(s):  
Sivakami A. ◽  
Balamurugan K. S. ◽  
Bagyalakshmi Shanmugam ◽  
Sudhagar Pitchaimuthu

Biomedical image analysis is very relevant to public health and welfare. Deep learning is quickly growing and has shown enhanced performance in medical applications. It has also been widely extended in academia and industry. The utilization of various deep learning methods on medical imaging endeavours to create systems that can help in the identification of disease and the automation of interpreting biomedical images to help treatment planning. New advancements in machine learning are primarily about deep learning employed for identifying, classifying, and quantifying patterns in images in the medical field. Deep learning, a more precise convolutional neural network has given excellent performance over machine learning in solving visual problems. This chapter summarizes a review of different deep learning techniques used and how they are applied in medical image interpretation and future directions.


Sign in / Sign up

Export Citation Format

Share Document