rock series
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 12)

H-INDEX

32
(FIVE YEARS 1)

2021 ◽  
Vol 13 (1) ◽  
pp. 166-187
Author(s):  
Hao Liu ◽  
Chan Wang ◽  
Yong Li ◽  
Jianghong Deng ◽  
Bin Deng ◽  
...  

Abstract The black rock series in the Qiongzhusi Formation contains important geochemical information about the early Cambrian tectonic and ecological environment of the southwestern Yangtze Block. In this paper, major, trace, and rare earth element data are presented in an attempt to reveal the sediment source during the deposition of the early Cambrian Qiongzhusi Formation and to reconstruct the sedimentary tectonic environment and weathering intensity during that time. The basin primarily received continental clastic material with neutral-acidic igneous rocks from a stable source and with a moderate level of maturity during the depositional period of the Qiongzhusi Formation. Furthermore, the strata were weakly influenced by submarine hydrothermal fluids during diagenesis. The reconstruction of the sedimentary environment and weathering intensity shows that P2O5 enrichment and water body stratification occurred due to the effects of upwelling ocean currents during the depositional period of the Qiongzhusi Formation. The combination of upwelling and bottom-water hydrothermal fluids led to environmental changes in the study area, from dry and hot to moist and warm. Last, the reconstruction of the tectonic environment of the Qiongzhusi Formation indicates that deposition occurred in continental slope and marginal marine environments associated with a continental arc tectonic system. These findings provide an essential basis for the comprehensive reconstruction of the early Cambrian sedimentary environment of the Yangtze Block.


2020 ◽  
Vol 36 (11) ◽  
pp. 3442-3462
Author(s):  
ZHU GuangYou ◽  
◽  
YAN HuiHui ◽  
CHEN WeiYan ◽  
YAN Lei ◽  
...  

2019 ◽  
Vol 64 (10) ◽  
pp. 1026-1046
Author(s):  
Yu. A. Litvin ◽  
A. V. Kuzyura ◽  
E. B. Limanov

Peritectic mechanisms, controlling fractional ultrabasic-basic evolution of the upper mantle magmatism and genesis of the peridotitepyroxeniteeclogite rock series, are substantiated in theory and experiment. Melting phase relations of a differentiated mantle material are studied with polythhermal section method in the multicomponent olivineclinopyroxene/omphacitecorundumcoesite system with boundary compositions duplicated these of peridotitic and eclogitic minerals. The peritectic reaction of orthopyroxene and melt with formation of clinopyroxene (the opthopyroxene clinopyroxenization reaction) has been determined at a liquidus surface of the ultrabasic olivineorthopyroxeneclinopyroxenegarnet system. As a result of the reaction the temperature-regressive univariant curve olivine + clinopyroxene + garnet + melt is formed. A further evolution of magmatism has experimentally studied at 6 GPa in the ultrabasic-basic olivinediopsidejadeitegarnet system with changeable compositions of the diopsidejadeite solid solutions (controlling the clinopyroxene omphacite mineralogy). Peritectic reaction of olivine and melt with formation of garnet was established on the liquidus surface of the ternary olivinediopsidejadeite system as the mechanism of olivine garnetization and going to the univariant curve omphacitegarnetmelt with formation of bimineral eclogites. Structure of the liquidus surface for the olivinediopsidejadeitegarnet system is inferred, and its role as a physic-chemical bridge between ultrabasic olivinebearing peridotitepyroxenitic and basic silica-saturated eclogitic compositions of the garnetperidotite facies matter. The new experimental physic-chemical results reveal the genetic links between ultrabasic and basic rocks as well as mechanisms of the uninterrupted fractional magmatic evolution and petrogenesis from the olivinebearing peridotitepyroxenitic to silica-saturated eclogite-grospyditicrocks. This provides an explanation for the uninterrupted composition trends for rock-forming components in clinopyroxenes and garnets of the differentiated rocks of the garnetperidotite facieis.


Sign in / Sign up

Export Citation Format

Share Document