early evening transition
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
Matthew C. Brown ◽  
Christopher J. Nowotarski ◽  
Andrew R. Dean ◽  
Bryan T. Smith ◽  
Richard L. Thompson ◽  
...  

AbstractThe response of severe local storms to environmental evolution across the early evening transition (EET) remains a forecasting challenge, particularly within the context of the Southeast US storm climatology, which includes the increased presence of low-CAPE environments and tornadic non-supercell modes. To disentangle these complex environmental interactions, Southeast severe convective reports spanning 2003-2018 are temporally binned relative to local sunset. Sounding-derived data corresponding to each report are used to characterize how the near-storm environment evolves across the EET, and whether these changes influence the mode, frequency, and tornadic likelihood of their associated storms. High-shear, high-CAPE (HSHC) environments are contrasted with high-shear, low-CAPE (HSLC) environments to highlight physical processes governing storm maintenance and tornadogenesis in the absence of large instability. Lastly, statistical analysis is performed to determine which aspects of the near-storm environment most effectively discriminate between tornadic (or significantly tornadic) and nontornadic storms towards constructing new sounding-derived forecast guidance parameters for multiple modal and environmental combinations. Results indicate that HSLC environments evolve differently than HSHC environments, particularly for non-supercell (e.g., quasi-linear convective system) modes. These low-CAPE environments sustain higher values of low-level shear and storm-relative helicity (SRH) and destabilize post-sunset – potentially compensating for minimal buoyancy. Furthermore, the existence of HSLC storm environments pre-sunset increases the likelihood of non-supercellular tornadoes post-sunset. Existing forecast guidance metrics such as the significant tornado parameter (STP) remain the most skillful predictors of HSHC tornadoes. However, HSLC tornado prediction can be improved by considering variables like precipitable water, downdraft CAPE, and effective inflow base.


2015 ◽  
Vol 143 (5) ◽  
pp. 1945-1969 ◽  
Author(s):  
Brice E. Coffer ◽  
Matthew D. Parker

Abstract The dynamical response of simulated supercells to temporally increasing lower-tropospheric vertical wind shear is investigated using idealized simulations. These simulations are based upon observed soundings from two cases that underwent an early evening transition during the Second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). Mature supercells were simulated in observed afternoon environments with moderate vertical wind shear and then compared to simulated supercells experiencing observed evening increases in lower-tropospheric shear. The primary effect of the increase in low-level shear is to establish larger values of vertical vorticity at lower altitudes in the storm’s updraft. In turn, this leads to a nonlinear increase in the updraft strength due to the enhanced dynamic pressure minimum associated with larger vorticity in the storm’s mesocyclone. This is particularly important at low levels, where it increases the storm's ability to lift cool surface air (including outflow). Trajectories launched in developing vortices show that, despite comparable buoyant accelerations, parcels experience greater vertical velocity and stretching of vertical vorticity due to increased dynamic accelerations when the low-level shear is increased. Thus, even as low-level stability gradually increases in the early evening, the supercells’ low-level updraft intensity and surface vorticity production can increase. These results are consistent with climatological observations of a supercell’s likelihood of tornadogenesis during the early evening hours.


Sign in / Sign up

Export Citation Format

Share Document