vertical vorticity
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 15)

H-INDEX

23
(FIVE YEARS 2)

Abstract Although much is known about the environmental conditions necessary for tornadogenesis, the near-ground vorticity dynamics during the tornadogenesis process itself are still somewhat poorly understood. For instance, seemingly contradicting mechanisms responsible for large near-ground vertical vorticity can be found in the literature. Broadly, these mechanisms can be sorted into two classes, one being based on upward tilting of mainly baroclinically produced horizontal vorticity in descending air (here called downdraft mechanism), while in the other the horizontal vorticity vector is abruptly tilted upward practically at the surface by a strong updraft gradient (referred to as in-and-up mechanism). In this study, full-physics supercell simulations and highly idealized simulations show that both mechanisms play important roles during tornadogenesis. Pretornadic vertical vorticity maxima are generated via the downdraft mechanism, while the dynamics of a fully developed vortex are dominated by the in-and-up mechanism. Consequently, a transition between the two mechanisms occurs during tornadogenesis. This transition is a result of axisymmetrization of the pretornadic vortex patch and intensification via vertical stretching. These processes facilitate the development of the corner flow, which enables production of vertical vorticity by upward tilting of horizontal vorticity practically at the surface, i.e. the in-and-up mechanism. The transition of mechanisms found here suggests that early stages of tornado formation rely on the downdraft mechanism, which is often limited to a small vertical component of baroclinically generated vorticity. Subsequently, a larger supply of horizontal vorticity (produced baroclinically or via surface drag, or even imported from the environment) may be utilized, which marks a considerable change in the vortex dynamics.


2021 ◽  
Author(s):  
Hao Fu ◽  
Shiwei Sun

Rotating Rayleigh-Bénard convection (RRBC) denotes the free convection between two parallel plates with a fixed temperature difference, placed in a rotating reference frame. It is a prototype model of geophysical and astrophysical convection. Rotation breaks the symmetry on its rotating axis, making the cyclones and anticyclones unequal in size and magnitude. Such an asymmetry has long been observed in experiments and simulations, but has not been explained with any theoretical model. A theory of such vorticity asymmetry is proposed specifically for the cellular regime, where background rotation is important and convection is weak. The property that columnar updraft and downdraft plumes are densely packed is shown to make the vertical vorticity profile at the vortex center approximately linear with height via thermal wind relation. This simplification of morphology enables a linkage between the vorticity strength of a plume which is quantified by vorticity Rossby number $\mathrm{Ro_V}$, and the vorticity magnitude difference between the cyclonic and anticyclonic ends of plumes which is quantified with a nondimensional asymmetry factor $\delta$. The lowest order relationship between $\delta$ and $\mathrm{Ro_V}$ is found to be constrained by vertical vorticity equation alone. An approximate analytical solution is found using asymptotic expansion, which shows that the asymmetry is generated mainly by the vertical advection and stretching of vertical vorticity in fluid interior, and is modified by the Ekman layer dynamics.


Author(s):  
Nicholas A. Goldacker ◽  
Matthew D. Parker

AbstractSupercell storms can develop a “dynamical response” whereby upward accelerations in the lower troposphere amplify as a result of rotationally induced pressure falls aloft. These upward accelerations likely modulate a supercell’s ability to stretch near-surface vertical vorticity to achieve tornadogenesis. This study quantifies such a dynamical response as a function of environmental wind profiles commonly found near supercells. Self-organizing maps (SOMs) were used to identify recurring low-level wind profile patterns from 20,194 model-analyzed, near-supercell soundings. The SOM nodes with larger 0–500 m storm-relative helicity (SRH) and streamwise vorticity (ωs) corresponded to higher observed tornado probabilities. The distilled wind profiles from the SOMs were used to initialize idealized numerical simulations of updrafts. In environments with large 0–500 m SRH and large ωs, a rotationally induced pressure deficit, increased dynamic lifting, and a strengthened updraft resulted. The resulting upward-directed accelerations were an order of magnitude stronger than typical buoyant accelerations. At 500 m AGL, this dynamical response increased the vertical velocity by up to 25 m s–1, vertical vorticity by up to 0.2 s–1, and pressure deficit by up to 5 hPa. This response specifically augments the near-ground updraft (the midlevel updraft properties are almost identical across the simulations). However, dynamical responses only occurred in environments where 0–500 m SRH and ωs exceeded 110 m2 s–2 and 0.015 s–1, respectively. The presence vs. absence of this dynamical response may explain why environments with higher 0–500 m SRH and ωs correspond to greater tornado probabilities.


2021 ◽  
Author(s):  
Irina I. Rypina ◽  
Timothy R. Getscher ◽  
Larry J. Pratt ◽  
Baptiste Mourre

<p>We present analyses of drifters with drogues at 1, 10, 30 and 50 m, which were deployed in the Mediterranean Sea to investigate subduction and upwelling processes. Drifter trajectories were used to estimate divergence, vorticity, vertical velocity, and finite-size Lyapunov exponents (FTLEs), and to investigate the magnitudes of terms in the vertical vorticity equation. The divergence and vorticity are O(f) and change sign along trajectories. Vertical velocity is O(1 mm/s), is larger at depth, indicates predominant upwelling with isolated downwelling events, and sometimes changes sign between 1 and 50 m. Vortex stretching is one of, but not the only, significant term in the vertical vorticity balance. 2D FTLEs are 2x10^(-5) 1/s after 1 day, about twice larger than in a 400-m-resolution numerical model. 3D FTLEs are 50% larger than 2D FTLEs and are dominated by the vertical shear of horizontal velocity. Bootstrapping-based uncertainty for both divergence and vorticity is ~10% of the time-mean absolute values. Simulated drifters in a model suggest that drifter-based divergence and vorticity are close to true model values, except when drifters get aligned into long and narrow filaments. Drifter-based vertical velocity is close to true values in the model at 1 m but differs from the true model values at deeper depths. The errors in the vertical velocity are largely due to the lateral separation between drifters at different depths, and partially due to having drifters at only 4 depths. Overall, multi-level drifters provided useful information about the 3D flow structure.</p>


2021 ◽  
Author(s):  
Hwa-yeon Kim ◽  
Eiichi Nakakita

<p> The localized severe heavy rainfalls, which has not been experienced in the past, have frequently occurred in Japan due to the effects of climate change. Especially, the Guerrilla heavy rainfall (abbreviated as GHR) by isolated rapidly growing single cumulonimbus is triggering flash floods in a small river basin and has caused huge damage to human life and property. If we alert the hazardous rainfall in 5 to 10 min earlier for evacuation, we could minimize human injuries such as isolation, death, and disappearance. For hydrometeorological disaster prevention, a system of the early detection and quantitative risk prediction methods is necessary to detect the initial stage of a cumulonimbus cloud before it is generated into heavy rainfall. In previous research, by analyzing the volume scan with some heavy rainfall events, an important sign named as the first echo (Baby-rain cell) was verified. Also, the vertical vortex tubes with positive and negative pairs did exist in the GHR. Most of the severely developed storm had a certain criterion of vertical vorticity. By using those analyses, we developed the early detection and quantitative risk prediction method as follows. We collect the radar variables (i.e. the vorticity, doppler velocity, and reflectivity, etc.) at each event and set the risk level when the maximum rainfall reached the ground. Then, we select an appropriate set of explaining variables considering the risk level. With the Receiver Operating Characteristic (ROC) analysis, we could find the most appropriate method to predict the risk level. However, we would like to improve the early detection and quantitative risk prediction method by estimating vertical vorticity, divergence and convergence with real wind field data. So, we apply the multiple-doppler radar analysis to estimate the variables reflecting real phenomena. As a result, the improved early detection and quantitative risk prediction method could predict the risk of GHR development accurately by using only the observed radar data. It is expected that the quantitative risk prediction could represent realistic flood prediction system and increase the leading time enough to reduce disaster.</p>


2020 ◽  
Vol 77 (12) ◽  
pp. 4089-4107
Author(s):  
Jannick Fischer ◽  
Johannes M. L. Dahl

AbstractIn the recent literature, the conception has emerged that supercell tornado potential may mostly depend on the strength of the low-level updraft, with more than sufficient subtornadic vertical vorticity being assumed to be present in the outflow. In this study, we use highly idealized simulations with heat sinks and sources to conduct controlled experiments, changing the cold pool or low-level updraft character independently. Multiple, time-dependent heat sinks are employed to produce a realistic near-ground cold pool structure. It is shown that both the cold pool and updraft strength actively contribute to the tornado potential. Furthermore, there is a sharp transition between tornadic and nontornadic cases, indicating a bifurcation between these two regimes triggered by small changes in the heat source or sink magnitude. Moreover, larger updraft strength, updraft width, and cold pool deficit do not necessarily result in a stronger maximum near-ground vertical vorticity. However, a stronger updraft or cold pool can both drastically reduce the time it takes for the first vortex to form.


2020 ◽  
Vol 148 (10) ◽  
pp. 4281-4297 ◽  
Author(s):  
Christian H. Boyer ◽  
Johannes M. L. Dahl

AbstractDespite their structural differences, supercells and quasi-linear convective systems (QLCS) are both capable of producing severe weather, including tornadoes. Previous research has highlighted multiple potential mechanisms by which horizontal vorticity may be reoriented into the vertical at low levels, but it is not clear in which situation what mechanism dominates. In this study, we use the CM1 model to simulate three different storm modes, each of which developed relatively large near-surface vertical vorticity. Using forward-integrated parcel trajectories, we analyze vorticity budgets and demonstrate that there seems to be a common mechanism for maintaining the near-surface vortices across storm structures. The parcels do not acquire vertical vorticity until they reach the base of the vortices. The vertical vorticity results from vigorous upward tilting of horizontal vorticity and simultaneous vertical stretching. While the parcels analyzed in our simulations do have a history of descent, they do not acquire appreciable vertical vorticity during their descent. Rather, during the analysis period relatively large horizontal vorticity develops as a result of horizontal stretching, and therefore this vorticity can be effectively tilted into the vertical.


2020 ◽  
Vol 5 (9) ◽  
Author(s):  
Vladimir M. Parfenyev ◽  
Sergey S. Vergeles

2020 ◽  
Vol 77 (9) ◽  
pp. 3081-3103
Author(s):  
Thomas J. Galarneau Jr. ◽  
Morris L. Weisman

Abstract Convection-allowing simulations of two warm seclusion cyclones are used to elucidate the vorticity dynamics that contribute to intensification of these systems. The rapidly intensifying oceanic “bomb” cyclone on 4–5 January 1989 and the super derecho on 8 May 2009 are the subject of this study. While these systems occupy different spatial scales, they both acquire characteristics of a warm seclusion cyclone. The aim of this study is to compare the basic structure and determine the dynamics driving increases in system-scale vertical vorticity during the intensification of these systems. Results from a vorticity budget show that system-scale stretching and the lateral transport of vertical vorticity to the cyclone center contribute to increases of system-scale low-level vertical vorticity during the intensification of the oceanic cyclone. The intercomparison of the oceanic cyclone and the super derecho shows that the relative contributions to increases in system-scale vertical vorticity by stretching and tilting as a function of height differ among the two cases. However, the lateral transport of vertical vorticity to the cyclone center is a key contributor to increases in low-level system-scale vertical vorticity for both cases. We hypothesize that this process may be common among a wide array of intense cyclonic systems across scales ranging from warm seclusion extratropical cyclones to some mesoscale convective systems.


2020 ◽  
Vol 77 (3) ◽  
pp. 965-980
Author(s):  
Richard Rotunno ◽  
George H. Bryan

Abstract This study considers a two-layer fluid with constant density in each layer connected by a layer of continuously varying density for flows past topography in which hydraulic jumps with lee vortices are expected based on shallow-water theory. Numerical integrations of the Navier–Stokes equations at a Reynolds number high enough for a direct numerical simulation of turbulent flow allow an examination of the internal mechanics of the turbulent leeside hydraulic jump and how this mechanics is related to lee vortices. Analysis of the statistically steady state shows that the original source of lee-vortex vertical vorticity is through the leeside descent of baroclinically produced spanwise vorticity associated with the hydraulic jump. This spanwise vorticity is tilted to the vertical at the spanwise extremities of the leeside hydraulic jump. Turbulent energy dissipation in flow through the hydraulic jump allows this leeside vertical vorticity to diffuse and extend downstream. The present simulations also suggest a geometrical interpretation of lee-vortex potential-vorticity creation, a concept central to interpretations of lee vortices based on the shallow-water equations.


Sign in / Sign up

Export Citation Format

Share Document