field inhomogeneity
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 27)

H-INDEX

31
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
T. C. Adorno ◽  
Zi-Wang He ◽  
S. P. Gavrilov ◽  
D. M. Gitman

Abstract We study neutral fermions pair creation with anomalous magnetic moment from the vacuum by time-independent magnetic-field inhomogeneity as an external background. We show that the problem is technically reduced to the problem of charged-particle creation by an electric step, for which the nonperturbative formulation of strong-field QED is used. We consider a magnetic step given by an analytic function and whose inhomogeneity may vary from a “gradual” to a “sharp” field configuration. We obtain corresponding exact solutions of the Dirac-Pauli equation with this field and calculate pertinent quantities characterizing vacuum instability, such as the differential mean number and flux density of pairs created from the vacuum, vacuum fluxes of energy and magnetic moment. We show that the vacuum flux in one direction is formed from fluxes of particles and antiparticles of equal intensity and with the same magnetic moments parallel to the external field. Backreaction to the vacuum fluxes leads to a smoothing of the magnetic-field inhomogeneity. We also estimate critical magnetic field intensities, near which the phenomenon could be observed.


2021 ◽  
Vol 2 (1) ◽  
pp. 523-543
Author(s):  
Kathrin Aebischer ◽  
Zdeněk Tošner ◽  
Matthias Ernst

Abstract. Radio-frequency field inhomogeneity is one of the most common imperfections in NMR experiments. They can lead to imperfect flip angles of applied radio-frequency (rf) pulses or to a mismatch of resonance conditions, resulting in artefacts or degraded performance of experiments. In solid-state NMR under magic angle spinning (MAS), the radial component becomes time-dependent because the rf irradiation amplitude and phase is modulated with integer multiples of the spinning frequency. We analyse the influence of such time-dependent MAS-modulated rf fields on the performance of some commonly used building blocks of solid-state NMR experiments. This analysis is based on analytical Floquet calculations and numerical simulations, taking into account the time dependence of the rf field. We find that, compared to the static part of the rf field inhomogeneity, such time-dependent modulations play a very minor role in the performance degradation of the investigated typical solid-state NMR experiments.


2021 ◽  
Author(s):  
Kathrin Aebischer ◽  
Zdeněk Tošner ◽  
Matthias Ernst

Abstract. Radio-frequency field inhomogeneity is one of the most common imperfections in NMR experiments. They can lead to imperfect flip angles of applied radio-frequency (rf) pulses or to a mismatch of resonance conditions resulting in artifacts or degraded performance of experiments. In solid-state NMR under magic-angle spinning, the radial component becomes time-dependent because the rf-irradiation amplitude and phase is modulated with integer multiples of the spinning frequency. We analyze the influence of such time-dependent MAS-modulated rf fields on the performance of some commonly used building blocks of solid-state NMR experiments. This analysis is based on analytical Floquet calculations as well as numerical simulations taking into account the time dependence of the rf field. We find that compared to the static part of the rf-field inhomogeneity, such time-dependent modulations play a very minor role in the performance degradation of the investigated typical solid-state NMR experiments.


Sign in / Sign up

Export Citation Format

Share Document