frequency field
Recently Published Documents


TOTAL DOCUMENTS

429
(FIVE YEARS 29)

H-INDEX

33
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Gaoxiang Li ◽  
Zhi Liang ◽  
Xu-xing Geng ◽  
Pan-li Qi ◽  
Kai Jin ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
pp. 523-543
Author(s):  
Kathrin Aebischer ◽  
Zdeněk Tošner ◽  
Matthias Ernst

Abstract. Radio-frequency field inhomogeneity is one of the most common imperfections in NMR experiments. They can lead to imperfect flip angles of applied radio-frequency (rf) pulses or to a mismatch of resonance conditions, resulting in artefacts or degraded performance of experiments. In solid-state NMR under magic angle spinning (MAS), the radial component becomes time-dependent because the rf irradiation amplitude and phase is modulated with integer multiples of the spinning frequency. We analyse the influence of such time-dependent MAS-modulated rf fields on the performance of some commonly used building blocks of solid-state NMR experiments. This analysis is based on analytical Floquet calculations and numerical simulations, taking into account the time dependence of the rf field. We find that, compared to the static part of the rf field inhomogeneity, such time-dependent modulations play a very minor role in the performance degradation of the investigated typical solid-state NMR experiments.


2021 ◽  
Author(s):  
Kathrin Aebischer ◽  
Zdeněk Tošner ◽  
Matthias Ernst

Abstract. Radio-frequency field inhomogeneity is one of the most common imperfections in NMR experiments. They can lead to imperfect flip angles of applied radio-frequency (rf) pulses or to a mismatch of resonance conditions resulting in artifacts or degraded performance of experiments. In solid-state NMR under magic-angle spinning, the radial component becomes time-dependent because the rf-irradiation amplitude and phase is modulated with integer multiples of the spinning frequency. We analyze the influence of such time-dependent MAS-modulated rf fields on the performance of some commonly used building blocks of solid-state NMR experiments. This analysis is based on analytical Floquet calculations as well as numerical simulations taking into account the time dependence of the rf field. We find that compared to the static part of the rf-field inhomogeneity, such time-dependent modulations play a very minor role in the performance degradation of the investigated typical solid-state NMR experiments.


Author(s):  
Shibashis Paul ◽  
Deb Shankar Ray

We consider a two-level quantum system interacting with two classical time-periodic electromagnetic fields. The frequency of one of the fields far exceeds that of the other. The effect of the high-frequency field can be averaged out of the dynamics to realize an effective transition frequency of the field-dressed two-level system. We examine the linear response, second harmonic response and Stokes and anti-Stokes Raman response of the dressed two-level system, to the weak frequency field. The vibrational resonance enhancement in each case is demonstrated for optimal strength of the high-frequency field. Our theoretical scheme is corroborated by full numerical simulation of the two-level, two-field dynamics governed by loss-free Bloch equations. We suggest that quantum optics can offer an interesting arena for the study of the vibrational resonance. This article is part of the theme issue ‘Vibrational and stochastic resonance in driven nonlinear systems (part 1)’.


2021 ◽  
Author(s):  
Amy K. Robinson ◽  
Nikunjkumar Prajapati ◽  
Damir Senic ◽  
Matthew T. Simons ◽  
Joshua A. Gordon ◽  
...  

2020 ◽  
Vol 102 (6) ◽  
Author(s):  
R. Wang ◽  
M. Aghigh ◽  
K. L. Marroquín ◽  
K. M. Grant ◽  
J. Sous ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document