pauli equation
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
T. C. Adorno ◽  
Zi-Wang He ◽  
S. P. Gavrilov ◽  
D. M. Gitman

Abstract We study neutral fermions pair creation with anomalous magnetic moment from the vacuum by time-independent magnetic-field inhomogeneity as an external background. We show that the problem is technically reduced to the problem of charged-particle creation by an electric step, for which the nonperturbative formulation of strong-field QED is used. We consider a magnetic step given by an analytic function and whose inhomogeneity may vary from a “gradual” to a “sharp” field configuration. We obtain corresponding exact solutions of the Dirac-Pauli equation with this field and calculate pertinent quantities characterizing vacuum instability, such as the differential mean number and flux density of pairs created from the vacuum, vacuum fluxes of energy and magnetic moment. We show that the vacuum flux in one direction is formed from fluxes of particles and antiparticles of equal intensity and with the same magnetic moments parallel to the external field. Backreaction to the vacuum fluxes leads to a smoothing of the magnetic-field inhomogeneity. We also estimate critical magnetic field intensities, near which the phenomenon could be observed.


Author(s):  
Stanley A. Bruce

We address the bound-state dynamics of relativistic spin-1/2 neutral particles (in this paper, Dirac neutrinos) with anomalous magnetic dipole moment in the presence of an electromagnetic (EM) field described by a generalized Dirac–Pauli equation. This equation of motion is derived including appropriate couplings between Lorentz scalar and pseudoscalar fields with the EM field in the Lagrangian of the system. Specifically, we exactly solve the bound-state problem of neutrinos in the presence of a homogeneous magnetic field in cylindrical coordinates. We comment on the relevance of this approach to study Dirac neutrino self-interactions.


2021 ◽  
Vol 136 (11) ◽  
Author(s):  
G. F. Dell’Antonio

AbstractIn Dell’Antonio (Eur Phys J Plus 13:1–20, 2021), we explored the possibility to analyse contact interaction in Quantum Mechanics using a variational tool, Gamma Convergence. Here, we extend the analysis in Dell’Antonio (Eur Phys J Plus 13:1–20, 2021) of joint weak contact of three particles to the non-relativistic case in which the free one particle Hamiltonian is $$ H_0 = - \frac{\Delta }{2M} $$ H 0 = - Δ 2 M . We derive the Gross–Pitaevskii equation for a system of three particles in joint weak contact. We then define and study strong contact and show that the Gross–Pitaevskii equation is also the variational equation for the energy of the Bose–Einstein condensate (strong contact in a four-particle system). We add some comments on Bogoliubov’s theory. In the second part, we use the non-relativistic Pauli equation and weak contact to derive the spectrum of the conduction electrons in an infinite crystal. We prove that the spectrum is pure point with multiplicity two and eigenvalues that scale as $$ \frac{1}{log {n}}$$ 1 logn .


2021 ◽  
Vol 66 (9) ◽  
pp. 771
Author(s):  
I. Haouam

We study the Pauli equation in a two-dimensional noncommutative phase-space by considering a constant magnetic field perpendicular to the plane. The noncommutative problem is related to the equivalent commutative one through a set of two-dimensional Bopp-shift transformations. The energy spectrum and the wave function of the two-dimensional noncommutative Pauli equation are found, where the problem in question has been mapped to the Landau problem. In the classical limit, we have derived the noncommutative semiclassical partition function for one- and N- particle systems. The thermodynamic properties such as the Helmholtz free energy, mean energy, specific heat and entropy in noncommutative and commutative phasespaces are determined. The impact of the phase-space noncommutativity on the Pauli system is successfully examined.


Author(s):  
Stanley A. Bruce

We address the bound-state dynamics of a neutron with anomalous magnetic dipole moment in the presence of electromagnetic (EM) fields described by a generalized Dirac–Pauli equation. This generalization consists of including appropriate couplings between Lorentz scalar and pseudoscalar fields with EM fields in the Lagrangian of the system. We exactly solve two single-particle problems: first, a Hydrogen-like system; second, a relativistic Schrödinger-like equation for a linear confining potential. We comment on the relevance of this approach to explore fermion (e.g. neutron) self-interactions as solitonic models of the neutron.


2021 ◽  
pp. 2150121
Author(s):  
Masoud Seidi

The eigenvalues and eigenfunctions of Dirac–Pauli equation have been obtained for a neutron with anomalous magnetic moment (AMM) in the presence of a strong magnetic field with cylindrical symmetry. In our calculations, the Nikiforov and Uvarov (NU) method has been used. Using the eigenfunctions and construction of the ladder operators, we show that these generators satisfy su(2) Lie algebra and computed the second-order Casimir operator of the lie algebra.


2021 ◽  
Vol 61 (1) ◽  
pp. 230-241
Author(s):  
Ilyas Haouam

In this paper, we obtained the three-dimensional Pauli equation for a spin-1/2 particle in the presence of an electromagnetic field in a noncommutative phase-space as well as the corresponding deformed continuity equation, where the cases of a constant and non-constant magnetic fields are considered. Due to the absence of the current magnetization term in the deformed continuity equation as expected, we had to extract it from the noncommutative Pauli equation itself without modifying the continuity equation. It is shown that the non-constant magnetic field lifts the order of the noncommutativity parameter in both the Pauli equation and the corresponding continuity equation. However, we successfully examined the effect of the noncommutativity on the current density and the magnetization current. By using a classical treatment, we derived the semi-classical noncommutative partition function of the three-dimensional Pauli system of the one-particle and N-particle systems. Then, we employed it for calculating the corresponding Helmholtz free energy followed by the magnetization and the magnetic susceptibility of electrons in both commutative and noncommutative phase-spaces. Knowing that with both the three-dimensional Bopp-Shift transformation and the Moyal-Weyl product, we introduced the phase-space noncommutativity in the problems in question.


Sign in / Sign up

Export Citation Format

Share Document