comparative biochemistry
Recently Published Documents


TOTAL DOCUMENTS

495
(FIVE YEARS 16)

H-INDEX

36
(FIVE YEARS 2)

2021 ◽  
Vol 13 (3) ◽  
pp. 51
Author(s):  
Н.Е. Басова ◽  
Г.А. Оганесян ◽  
Е.В. Розенгарт

The main stages of the life and scientific biography of Professor Viktor Iosifovich Rozengart, one of the founders of Russian neurochemistry and comparative biochemistry of toxic organophosphorus compounds, are presented.


ChemBioChem ◽  
2020 ◽  
Author(s):  
Jenny Arnling Bååth ◽  
Kim Borch ◽  
Kenneth Jensen ◽  
Jesper Brask ◽  
Peter Westh

2020 ◽  
Vol 295 (20) ◽  
pp. 6888-6925 ◽  
Author(s):  
Donald A. Bryant ◽  
C. Neil Hunter ◽  
Martin J. Warren

Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B12), coenzyme F430, heme d1, and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.


Sign in / Sign up

Export Citation Format

Share Document