magnetotail reconnection
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 31)

H-INDEX

27
(FIVE YEARS 5)

2021 ◽  
Vol 39 (6) ◽  
pp. 991-1003
Author(s):  
Christopher M. Bard ◽  
John C. Dorelli

Abstract. We use a newly developed global Hall magnetohydrodynamic (MHD) code to investigate how reconnection drives magnetotail asymmetries in small, ion-scale magnetospheres. Here, we consider a magnetosphere with a similar aspect ratio to Earth but with the ion inertial length (δi) artificially inflated by a factor of 70: δi is set to the length of the planetary radius. This results in a magnetotail width on the order of 30 δi, slightly smaller than Mercury's tail and much smaller than Earth's with respect to δi. At this small size, we find that the Hall effect has significant impact on the global flow pattern, changing from a symmetric, Dungey-like convection under resistive MHD to an asymmetric pattern similar to that found in previous Hall MHD simulations of Ganymede's subsonic magnetosphere as well as other simulations of Mercury's using multi-fluid or embedded kinetic physics. We demonstrate that the Hall effect is sufficient to induce a dawnward asymmetry in observed dipolarization front locations and find quasi-periodic global-scale dipolarizations under steady, southward solar wind conditions. On average, we find a thinner current sheet dawnward; however, the measured thickness oscillates with the dipolarization cycle. During the flux-pileup stage, the dawnward current sheet can be thicker than the duskward sheet. This could be an explanation for recent observations that suggest Mercury's current sheet is actually thicker on the duskside: a sampling bias due to a longer lasting “thick” state in the sheet.


2021 ◽  
Vol 39 (4) ◽  
pp. 599-612
Author(s):  
Andrei Runov ◽  
Maxime Grandin ◽  
Minna Palmroth ◽  
Markus Battarbee ◽  
Urs Ganse ◽  
...  

Abstract. We present results of noon–midnight meridional plane global hybrid-Vlasov simulations of the magnetotail ion dynamics under a steady southward interplanetary magnetic field using the Vlasiator model. The simulation results show magnetotail reconnection and formation of earthward and tailward fast plasma outflows. The hybrid-Vlasov approach allows us to study ion velocity distribution functions (VDFs) that are self-consistently formed during the magnetotail evolution. We examine the VDFs collected by virtual detectors placed along the equatorial magnetotail within earthward and tailward outflows and around the quasi-steady X line formed in the magnetotail at X≈-14RE. This allows us to follow the evolution of VDFs during earthward and tailward motion of reconnected flux tubes as well as study signatures of unmagnetized ion motion in the weak magnetic field near the X line. The VDFs indicate actions of Fermi-type and betatron acceleration mechanisms, ion acceleration by the reconnection electric field, and Speiser-type motion of ions near the X line. The simulated VDFs are compared and show good agreement with VDFs observed in the magnetotail by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) spacecraft. We find that the VDFs become more gyrotropic but retain transverse anisotropy and counterstreaming ion beams when being convected earthward. The presented global hybrid-Vlasov simulation results are valuable for understanding physical processes of ion acceleration during magnetotail reconnection, interpretation of in situ observations, and for future mission development by setting requirements on pitch angle and energy resolution of upcoming instruments.


2021 ◽  
Author(s):  
Christopher Bard ◽  
John Dorelli

Abstract. We use a newly developed global Hall MHD code to investigate how reconnection drives magnetotail asymmetries in small magnetospheres. Here, we consider a scaled-down, Earth-like magnetosphere where the ion inertial length (δi) is artificially inflated to one planetary radius (the real Earth's δi ≈ 1/15–1/20 RE in the magnetotail). This results in a magnetotail width on the order of 30 δi, slightly smaller than Mercury's tail and much smaller than Earth's. At this small size, we find that the Hall effect has significant impact on the global flow pattern, changing from a symmetric, Dungey-like convection under resistive MHD to an asymmetric pattern similar to that found in previous Hall MHD simulations of Ganymede's subsonic magnetosphere as well as other simulations of Mercury's using multi-fluid or embedded kinetic physics. We demonstrate that the Hall effect is sufficient to induce a dawnward asymmetry in observed dipolarization front locations and find quasi-periodic global scale dipolarizations under steady, southward solar wind conditions. On average, we find a thinner current sheet dawnward; however, the measured thickness oscillates with the dipolarization cycle. During the flux-pileup stage, the dawnward current sheet can be thicker than the duskward sheet. This could be an explanation for recent observations that suggest Mercury's current sheet is actually thicker on the duskside: a sampling bias due to a longer-lasting "thick" state in the sheet.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mikhail Sitnov ◽  
Grant Stephens ◽  
Tetsuo Motoba ◽  
Marc Swisdak

Magnetic reconnection is a fundamental process providing topological changes of the magnetic field, reconfiguration of space plasmas and release of energy in key space weather phenomena, solar flares, coronal mass ejections and magnetospheric substorms. Its multiscale nature is difficult to study in observations because of their sparsity. Here we show how the lazy learning method, known as K nearest neighbors, helps mine data in historical space magnetometer records to provide empirical reconstructions of reconnection in the Earth’s magnetotail where the energy of solar wind-magnetosphere interaction is stored and released during substorms. Data mining reveals two reconnection regions (X-lines) with different properties. In the mid tail (∼30RE from Earth, where RE is the Earth’s radius) reconnection is steady, whereas closer to Earth (∼20RE) it is transient. It is found that a similar combination of the steady and transient reconnection processes can be reproduced in kinetic particle-in-cell simulations of the magnetotail current sheet.


2021 ◽  
Vol 126 (3) ◽  
Author(s):  
Xiancai Yu ◽  
Quanming Lu ◽  
Rongsheng Wang ◽  
Kai Huang ◽  
Xinliang Gao ◽  
...  

2021 ◽  
Author(s):  
Andrei Runov ◽  
Maxime Grandin ◽  
Minna Palmroth ◽  
Markus Battarbee ◽  
Urs Ganse ◽  
...  

Abstract. We present results of noon–midnight meridional plane global hybrid-Vlasov simulations of the magnetotail ion dynamics under steady southward interplanetary magnetic field using the Vlasiator model. The simulation results show magnetotail reconnection and formation of earthward and tailward fast plasma outflows. The hybrid-Vlasov approach allows us to study ion velocity distribution functions (VDFs) that are self-consistently formed during the magnetotail evolution. We examine the VDFs collected by virtual detectors placed along the equatorial magnetotail within earthward and tailward outflows and around the quasi-steady X-line formed in the magnetotail at X ≈ −14 RE. This allows us to follow the evolution of VDFs during earthward and tailward motion of reconnected flux tubes as well as study signatures of unmagnetized ion motion in the weak magnetic field near the X-line. The VDFs indicate actions of Fermi-type and betatron acceleration mechanisms, ion acceleration by the reconnection electric field, and Speiser-type motion of ions near the X-line. The simulated VDFs are compared and show good agreement with VDFs observed in the magnetotail by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) spacecraft. We find that the VDFs become more gyrotropic but retain transverse anisotropy and counter-streaming ion beams when being convected earthward. The presented global hybrid-Vlasov simulation results are valuable for understanding physical processes of ion acceleration during magnetotail reconnection, interpretation of in-situ observations, and for future mission development by setting requirements on pitch-angle and energy resolution of upcoming instruments.


Author(s):  
Ian J. Cohen ◽  
Drew L. Turner ◽  
Barry H. Mauk ◽  
Sam T. Bingham ◽  
J. Bern Blake ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
San Lu ◽  
Rongsheng Wang ◽  
Quanming Lu ◽  
V. Angelopoulos ◽  
R. Nakamura ◽  
...  

Abstract Magnetotail reconnection plays a crucial role in explosive energy conversion in geospace. Because of the lack of in-situ spacecraft observations, the onset mechanism of magnetotail reconnection, however, has been controversial for decades. The key question is whether magnetotail reconnection is externally driven to occur first on electron scales or spontaneously arising from an unstable configuration on ion scales. Here, we show, using spacecraft observations and particle-in-cell (PIC) simulations, that magnetotail reconnection starts from electron reconnection in the presence of a strong external driver. Our PIC simulations show that this electron reconnection then develops into ion reconnection. These results provide direct evidence for magnetotail reconnection onset caused by electron kinetics with a strong external driver.


Sign in / Sign up

Export Citation Format

Share Document