block diagonalization
Recently Published Documents


TOTAL DOCUMENTS

354
(FIVE YEARS 44)

H-INDEX

29
(FIVE YEARS 3)

Author(s):  
Ryoshun Oba ◽  
Shin-ichi Tanigawa

AbstractA tensegrity is a structure made from cables, struts, and stiff bars. A d-dimensional tensegrity is universally rigid if it is rigid in any dimension $$d'$$ d ′ with $$d'\ge d$$ d ′ ≥ d . The celebrated super stability condition due to Connelly gives a sufficient condition for a tensegrity to be universally rigid. Gortler and Thurston showed that super stability characterizes universal rigidity when the point configuration is generic and every member is a stiff bar. We extend this result in two directions. We first show that a generic universally rigid tensegrity is super stable. We then extend it to tensegrities with point group symmetry, and show that this characterization still holds as long as a tensegrity is generic modulo symmetry. Our strategy is based on the block-diagonalization technique for symmetric semidefinite programming problems, and our proof relies on the theory of real irreducible representations of finite groups.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuanzhao Zhang ◽  
Vito Latora ◽  
Adilson E. Motter

AbstractWhen describing complex interconnected systems, one often has to go beyond the standard network description to account for generalized interactions. Here, we establish a unified framework to simplify the stability analysis of cluster synchronization patterns for a wide range of generalized networks, including hypergraphs, multilayer networks, and temporal networks. The framework is based on finding a simultaneous block diagonalization of the matrices encoding the synchronization pattern and the network topology. As an application, we use simultaneous block diagonalization to unveil an intriguing type of chimera states that appear only in the presence of higher-order interactions. The unified framework established here can be extended to other dynamical processes and can facilitate the discovery of emergent phenomena in complex systems with generalized interactions.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lu Zhang ◽  
Qiugen Xiao ◽  
Hailun Wang ◽  
Yinyin Hou

According to the actual application system model which has bias, this paper analyzes the shortage of the conventional augmented algorithm, the two-stage cubature Kalman filtering algorithm, which is presented on the basis of a two-stage nonlinear transformation. The core ideas of the algorithm are to obtain the block diagonalization of the covariance matrix using the matrix transformation and avoid calculating the covariance of the state and bias to reduce the amount of calculation and ensure a smooth filtering process. Then, the equivalence of the two-stage cubature Kalman filtering algorithm and the cubature Kalman filtering algorithm is proved by updating equivalent transformation. Through the experiment of trajectory tracking of a wheeled robot, it is verified that the two-stage cubature Kalman filtering algorithm can obtain good tracking accuracy and stability with the presence of unknown random bias. Simultaneously, the equivalence of the two-stage cubature Kalman filtering algorithm and cubature Kalman filtering algorithm is verified again using the contrast experiment.


2021 ◽  
Vol 140 (6) ◽  
Author(s):  
D. O. Kashinski ◽  
J. Bohnemann ◽  
A. P. Hickman ◽  
D. Talbi

AbstractWe present a diabatic representation of the potential energy curves (PECs) for the $$^4{{\Pi}} $$ 4 Π states of $$\mathrm {SH}$$ SH . Multireference, configuration interaction (MRCI) calculations were used to determine high-accuracy adiabatic PECs of both $$\mathrm {SH}$$ SH and $${\mathrm {SH}}^+$$ SH + from which the diabatic representation is constructed for $$\mathrm {SH}$$ SH . The adiabatic PECs exhibit many avoided crossings due to strong Rydberg-valence mixing. We employ the block diagonalization method, an orthonormal rotation of the adiabatic Hamiltonian, to disentangle the valence autoionizing and Rydberg $$^4\Pi $$ 4 Π states of $$\mathrm {SH}$$ SH by constructing a diabatic Hamiltonian. The diagonal elements of the diabatic Hamiltonian matrix at each nuclear geometry render the diabatic PECs and the off-diagonal elements are related to the state-to-state coupling. Care is taken to assure smooth variation and consistency of chemically significant molecular orbitals across the entire geometry domain.


Sign in / Sign up

Export Citation Format

Share Document