waveform relaxation
Recently Published Documents


TOTAL DOCUMENTS

461
(FIVE YEARS 42)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
Alma Trazivuk ◽  
Andre Alberts ◽  
Adrijan Baric ◽  
Vladimir Ceperic

2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Ke Li ◽  
Dali Guo ◽  
Yunxiang Zhao

Diffusion equations with Riemann–Liouville fractional derivatives are Volterra integro-partial differential equations with weakly singular kernels and present fundamental challenges for numerical computation. In this paper, we make a convergence analysis of the Schwarz waveform relaxation (SWR) algorithms with Robin transmission conditions (TCs) for these problems. We focus on deriving good choice of the parameter involved in the Robin TCs, at the continuous and fully discretized level. Particularly, at the space-time continuous level, we show that the derived Robin parameter is much better than the one predicted by the well-understood equioscillation principle. At the fully discretized level, the problem of determining a good Robin parameter is studied in the convolution quadrature framework, which permits us to precisely capture the effects of different temporal discretization methods on the convergence rate of the SWR algorithms. The results obtained in this paper will be preliminary preparations for our further study of the SWR algorithms for integro-partial differential equations.


Author(s):  
Jonas Dünnebacke ◽  
Stefan Turek ◽  
Christoph Lohmann ◽  
Andriy Sokolov ◽  
Peter Zajac

We discuss how “parallel-in-space & simultaneous-in-time” Newton-multigrid approaches can be designed which improve the scaling behavior of the spatial parallelism by reducing the latency costs. The idea is to solve many time steps at once and therefore solving fewer but larger systems. These large systems are reordered and interpreted as a space-only problem leading to multigrid algorithm with semi-coarsening in space and line smoothing in time direction. The smoother is further improved by embedding it as a preconditioner in a Krylov subspace method. As a prototypical application, we concentrate on scalar partial differential equations (PDEs) with up to many thousands of time steps which are discretized in time, resp., space by finite difference, resp., finite element methods. For linear PDEs, the resulting method is closely related to multigrid waveform relaxation and its theoretical framework. In our parabolic test problems the numerical behavior of this multigrid approach is robust w.r.t. the spatial and temporal grid size and the number of simultaneously treated time steps. Moreover, we illustrate how corresponding time-simultaneous fixed-point and Newton-type solvers can be derived for nonlinear nonstationary problems that require the described solution of linearized problems in each outer nonlinear step. As the main result, we are able to generate much larger problem sizes to be treated by a large number of cores so that the combination of the robustly scaling multigrid solvers together with a larger degree of parallelism allows a faster solution procedure for nonstationary problems.


Sign in / Sign up

Export Citation Format

Share Document