mass timber
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 139)

H-INDEX

8
(FIVE YEARS 6)

2022 ◽  
Vol 148 (3) ◽  
Author(s):  
A. Busch ◽  
R. B. Zimmerman ◽  
S. Pei ◽  
E. McDonnel ◽  
P. Line ◽  
...  

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Kent Davis ◽  
Scott Leavengood ◽  
Jeffrey J. Morrell

Wood exposed in exterior applications degrades and changes color due to weathering and fungal growth. Wood coatings can reduce the effects of weathering by reducing the damaging effects of ultraviolet light, reducing water absorption, and slowing fungal growth on the surface. Coating performance depends on the blend of resins, oils, and pigments and varies considerably among different wood species and conditions. Specific information describing expected service for different wood species and exposure conditions is not commonly available; certain combinations may work well in one climate or on one timber species, but underperform elsewhere. This study compared the performance of three industrial wood coatings on two wood species for two temperate climates under natural weathering conditions. Most of the coatings/species combinations lost their protective properties within 12 to 15 months; however, fungal growth was more prevalent at the wetter site than at the drier site for several combinations. Film-forming coatings often peeled and cracked, while penetrating coatings weathered and changed color relatively uniformly during the study. While no coating was completely effective, the results illustrate the benefits of using coatings that promote the development of natural, uniform-patinaed wood surfaces. The findings also guide coating maintenance programs for mass timber structures exposed to natural weathering conditions.


2022 ◽  
Vol 14 (2) ◽  
pp. 758
Author(s):  
Rachel Pasternack ◽  
Mark Wishnie ◽  
Caitlin Clarke ◽  
Yangyang Wang ◽  
Ethan Belair ◽  
...  

As the need to address climate change grows more urgent, policymakers, businesses, and others are seeking innovative approaches to remove carbon dioxide emissions from the atmosphere and decarbonize hard-to-abate sectors. Forests can play a role in reducing atmospheric carbon. However, there is disagreement over whether forests are most effective in reducing carbon emissions when left alone versus managed for sustainable harvesting and wood product production. Cross-laminated timber is at the forefront of the mass timber movement, which is enabling designers, engineers, and other stakeholders to build taller wood buildings. Several recent studies have shown that substituting mass timber for steel and concrete in mid-rise buildings can reduce the emissions associated with manufacturing, transporting, and installing building materials by 13%-26.5%. However, the prospect of increased utilization of wood products as a climate solution also raises questions about the impact of increased demand for wood on forest carbon stocks, on forest condition, and on the provision of the many other critical social and environmental benefits that healthy forests can provide. A holistic assessment of the total climate impact of forest product demand across product substitution, carbon storage in materials, current and future forest carbon stock, and forest area and condition is challenging, but it is important to understand the impact of increased mass timber utilization on forests and climate, and therefore also on which safeguards might be necessary to ensure positive outcomes. To thus assess the potential impacts, both positive and negative, of greater mass timber utilization on forests ecosystems and emissions associated with the built environment, The Nature Conservancy (TNC) initiated a global mass timber impact assessment (GMTIA), a five-part, highly collaborative research program focused on understanding the potential benefits and risks of increased demand for mass timber products on forests and identifying appropriate safeguards to ensure positive outcomes.


Author(s):  
Lucas Rosse Caldas ◽  
Jorge Sierra-Pérez ◽  
Romildo Dias Toledo Filho ◽  
Marcos Silvoso

The Cross-Laminated Timber (CLT) has been receiving special attention in recent research as an alternative for climate change mitigation since it is a renewable source and can remove and stock high amounts of CO2 from the atmosphere. Some countries, such as Brazil, still do not have mature and large CLT industry. However, the development of this industry in other countries is expected since the CLT is considered the main wood material to be used in high-rise mass timber buildings. It is particularly important to have environmental information, especially concerning the climate change impacts, in terms of life cycle greenhouse gas (GHG) emissions, for this product to increase its competitiveness in a new market. In this context, this research aimed to evaluate three different Life cycle inventories (LCIs) for CLT production of studies from Japan and the United States. Based on the first findings, we summarized the critical items in the LCI of CLT production and listed some actions for the reduction of GHG emissions that occur in this process. The LCIs are adapted considering the context of Brazil (a country with a cleaner electricity matrix) and China (a country with the highest share of fossil fuels). The main inconsistencies present in the LCIs are presented and discussed. The GHG emissions are concentrated in the following hotspots: (1) Roundwood production; (2) electricity consumption; and (3) adhesives production for CLT production. Therefore, the reduction of the consumption of these materials and activities should be encouraged for the decrease of GHG emissions. The data of Roundwood used in the modelling severely affects the final results. Their GHG emissions are related to the consumption of diesel in forestry activities. This research brings insights into the evaluation of the life cycle GHG emissions from the production of CLT.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Oluwamuyiwa Okunrounmu ◽  
Osama (Sam) Salem ◽  
George Hadjisophocleous

PurposeThe fire resistance of timber structures is heavily dependent on the fire behaviour of the connections between its structural elements. The experimental study presented in this paper aimed to investigate the fire performance of glued-laminated timber beam connections reinforced perpendicular-to-wood grain with self-tapping screws (STS).Design/methodology/approachTwo full-size fire experiments were conducted on glulam beam-end connections loaded in flexure bending. Two connection configurations, each utilizing four steel bolts arranged in two different patterns, were reinforced perpendicular to wood grain using STS. The bolt heads and nuts and the steel plate top and bottom edges were fire protected using wood plugs and strips, respectively. Each connection configuration was loaded to 100% of the ultimate design load of the weakest unreinforced configuration. The test assemblies were exposed to elevated temperatures that followed the CAN/ULC-S101 standard fire time–temperature curve.FindingsThe experimental results show that the influence of the STS was significant as it prevented the occurrence of wood splitting and row shear-out and as a result, increased the fire resistance time of the connections. The time to failure of both connection configurations exceeded the minimum fire resistance rating specified as 45 min for combustible construction in applicable building codes.Originality/valueThe experimental data show the effectiveness of a simple fire protection system (i.e. wood plugs and strips) along with the utilization of STS on the rotational behaviour, charring rate, fire resistance time and failure mode of the proposed hybrid mass timber beam-end connection configurations.


2022 ◽  
pp. 103523
Author(s):  
Hangyu Xu ◽  
Ian Pope ◽  
Vinny Gupta ◽  
Jaime Cadena ◽  
Jeronimo Carrascal ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 381
Author(s):  
Jeff Comnick ◽  
Luke Rogers ◽  
Kent Wheiler

Mass timber products are growing in popularity as a substitute for steel and concrete, reducing embodied carbon in the built environment. This trend has raised questions about the sustainability of the U.S. timber supply. Our research addresses concerns that rising demand for mass timber products may result in unsustainable levels of harvesting in coniferous forests in the United States. Using U.S. Department of Agriculture U.S. Forest Service Forest Inventory and Analysis (FIA) data, incremental U.S. softwood (coniferous) timber harvests were projected to supply a high-volume estimate of mass timber and dimensional lumber consumption in 2035. Growth in reserve forests and riparian zones was excluded, and low confidence intervals were used for timber growth estimates, compared with high confidence intervals for harvest and consumption estimates. Results were considered for the U.S. in total and by three geographic regions (North, South, and West). In total, forest inventory growth in America exceeds timber harvests including incremental mass timber volumes. Even the most optimistic projections of mass timber growth will not exceed the lowest expected annual increases in the nation’s harvestable coniferous timber inventory.


2021 ◽  
Vol 14 (1) ◽  
pp. 144
Author(s):  
Cindy X. Chen ◽  
Francesca Pierobon ◽  
Susan Jones ◽  
Ian Maples ◽  
Yingchun Gong ◽  
...  

As the population continues to grow in China’s urban settings, the building sector contributes to increasing levels of greenhouse gas (GHG) emissions. Concrete and steel are the two most common construction materials used in China and account for 60% of the carbon emissions among all building components. Mass timber is recognized as an alternative building material to concrete and steel, characterized by better environmental performance and unique structural features. Nonetheless, research associated with mass timber buildings is still lacking in China. Quantifying the emission mitigation potentials of using mass timber in new buildings can help accelerate associated policy development and provide valuable references for developing more sustainable constructions in China. This study used a life cycle assessment (LCA) approach to compare the environmental impacts of a baseline concrete building and a functionally equivalent timber building that uses cross-laminated timber as the primary material. A cradle-to-gate LCA model was developed based on onsite interviews and surveys collected in China, existing publications, and geography-specific life cycle inventory data. The results show that the timber building achieved a 25% reduction in global warming potential compared to its concrete counterpart. The environmental performance of timber buildings can be further improved through local sourcing, enhanced logistics, and manufacturing optimizations.


Sign in / Sign up

Export Citation Format

Share Document