exterior field
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 3)

H-INDEX

13
(FIVE YEARS 0)

2020 ◽  
Vol 34 (34) ◽  
pp. 2050396
Author(s):  
Rong Guo ◽  
Rennian Li ◽  
Renhui Zhang ◽  
Wei Han

The aim of this study was to investigate the action mechanism of the rotor–stator interaction (RSI) in the transient flow field and hydrodynamic noise field of the guide vane in jet centrifugal pumps (JCPs). The numerical method of CFD (computational fluid dynamics), coupled with CFA (computational fluid acoustics), was used to analyze the correlation between the impeller parameters and the flow/sound characteristics of the guide vane. The results show that on the inlet surface of the guide vane, an impeller with fewer blades, a smaller wrap angle, a smaller outlet angle and a smaller outlet diameter is beneficial for reducing the pressure fluctuation intensity. When the guide vane geometry is constant, the evolution processes of the transient flow field inside the static and dynamic cascades are mainly related to the blade number and speed of the impeller. An impeller with more blades, a larger wrap angle, a smaller outlet angle and a smaller outlet diameter is beneficial for improving the flow field distribution in the dynamic and static cascades. The hydrodynamic noise in the interior field is mainly related to the fluctuation characteristics of the transient flow field, but that in the exterior field is related not only to the fluctuation characteristics of the transient flow field, but also to the structural properties of the JCP pump body. The hydrodynamic noise in the exterior field presents an obvious dipole symmetrical distribution on the meridional plane, and the minimum value appears in the direction of the rotation axis because of the symmetrical structural characteristics of the pump body. The modal-shaped features of the JCP lead to a sidelobe phenomenon on the sagittal plane.


2019 ◽  
Vol 39 (4) ◽  
pp. 271-280
Author(s):  
Jian-Mei Zhou ◽  
Hao Hu ◽  
Jia Sun ◽  
Yu Tai

2018 ◽  
Vol 96 (12) ◽  
pp. 1373-1383 ◽  
Author(s):  
M.I. Wanas ◽  
Samah A. Ammar ◽  
Shymaa A. Refaey

Guided by the rules of Einstein’s geometrization philosophy, a pure geometric field theory is constructed. The Lagrangian used to derive the field equations of the theory is a curvature scalar of a version of absolute parallelism (AP) geometry known in the literature as the parameterized absolute parallelism (PAP) geometry. The linear connection of this version has simultaneously non-vanishing curvature and torsion. Analysis of the theory obtained shows clearly that it is a pure gravity theory. The theory is a teleparallel one, since the building blocks of both PAP and AP geometries are the same. It is shown analytically that the theory has a trivial version in the AP-geometry, if gravity is attributed to curvature not to torsion. In the case of spherical symmetry, solutions of the field equations give rise to the Schwarzschild exterior field. The theory depends on two principles: covariance and unification. The weak equivalence principle is satisfied under a certain condition. The work preserves Einstein’s main idea that gravity is just space–time curvature, although it is not a metric theory. It is shown that the theory reduces to vacuum general relativity upon taking the parameter of the geometry b = 0.


2018 ◽  
Vol 5 (7) ◽  
pp. 180640 ◽  
Author(s):  
Francisco Frutos-Alfaro ◽  
Michael Soffel

Among the known exact solutions of Einstein's vacuum field equations the Manko–Novikov and the Quevedo–Mashhoon metrics might be suitable ones for the description of the exterior gravitational field of some real non-collapsed body. A new proposal to represent such exterior field is the stationary q -metric. In this contribution, we computed by means of the Fodor–Hoenselaers–Perjés formalism the lowest 10 relativistic multipole moments of these metrics. Corresponding moments were derived for the static vacuum solutions of Gutsunayev–Manko and Hernández–Martín. A direct comparison between the multipole moments of these non-isometric space–times is given.


2014 ◽  
Vol 490-491 ◽  
pp. 1254-1258
Author(s):  
Shao Rong Wang ◽  
Xiao Long Shi

Improved and extended level set framework with a novel iso-neigborhood concept. In the new framework, driving forces are determined by the iso-neighborhood rather than only by some exterior field outside the propagating fronts. This hybrid driving forces make the propagation of the active contour more robust. And furthermore the new framework will be very flexible to various kinds of images by defining different type of sampling algorithm in the iso-neighborhood.


Open Physics ◽  
2013 ◽  
Vol 11 (7) ◽  
Author(s):  
Mamdouh Wanas ◽  
Samah Ammar

AbstractThe present work represents a step in dealing with stellar structure using a pure geometric approach. Geometric field theory is used to construct a model for a spherically symmetric configuration. In this case, two solutions have been obtained for the field equations. The first represents an interior solution which may be considered as a pure geometric one in the sense that the tensor describing the material distributions is not a phenomenological object, but a part of the geometric structure used. A general equation of state for a perfect fluid, is obtained from, and not imposed on, the model. The second solution gives rise to Schwarzschild exterior field in its isotropic form. The two solutions are matched, at a certain boundary, to evaluate the constants of integration. The interior solution obtained shows that there are different zones characterizing the configuration: a central radiation dominant zone, a probable convection zone as a physical interpretation of the singularity of the model, and a corona like zone. The model may represent a type of main sequence stars. The present work shows that Einstein’s geometerization scheme can be extended to gain more physical information within material distribution, with some advantages.


Sign in / Sign up

Export Citation Format

Share Document