net load
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 66)

H-INDEX

12
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Yufan Zhang ◽  
Honglin Wen ◽  
Qiuwei Wu ◽  
Qian Ai

Prediction intervals (PIs) offer an effective tool for quantifying uncertainty of loads in distribution systems. The traditional central PIs cannot adapt well to skewed distributions, and their offline training fashion is vulnerable to the unforeseen change in future load patterns. Therefore, we propose an optimal PI estimation approach, which is online and adaptive to different data distributions by adaptively determining symmetric or asymmetric probability proportion pairs for quantiles of PIs’ bounds. It relies on the online learning ability of reinforcement learning (RL) to integrate the two online tasks, i.e., the adaptive selection of probability proportion pairs and quantile predictions, both of which are modeled by neural networks. As such, the quality of quantiles-formed PI can guide the selection process of optimal probability proportion pairs, which forms a closed loop to improve PIs’ quality. Furthermore, to improve the learning efficiency of quantile forecasts, a prioritized experience replay (PER) strategy is proposed for online quantile regression processes. Case studies on both load and net load demonstrate that the proposed method can better adapt to data distribution compared with online central PIs method. Compared with offline-trained methods, it obtains PIs with better quality and is more robust against concept drift.


2022 ◽  
Author(s):  
Yufan Zhang ◽  
Honglin Wen ◽  
Qiuwei Wu ◽  
Qian Ai

Prediction intervals (PIs) offer an effective tool for quantifying uncertainty of loads in distribution systems. The traditional central PIs cannot adapt well to skewed distributions, and their offline training fashion is vulnerable to the unforeseen change in future load patterns. Therefore, we propose an optimal PI estimation approach, which is online and adaptive to different data distributions by adaptively determining symmetric or asymmetric probability proportion pairs for quantiles of PIs’ bounds. It relies on the online learning ability of reinforcement learning (RL) to integrate the two online tasks, i.e., the adaptive selection of probability proportion pairs and quantile predictions, both of which are modeled by neural networks. As such, the quality of quantiles-formed PI can guide the selection process of optimal probability proportion pairs, which forms a closed loop to improve PIs’ quality. Furthermore, to improve the learning efficiency of quantile forecasts, a prioritized experience replay (PER) strategy is proposed for online quantile regression processes. Case studies on both load and net load demonstrate that the proposed method can better adapt to data distribution compared with online central PIs method. Compared with offline-trained methods, it obtains PIs with better quality and is more robust against concept drift.


2021 ◽  
Author(s):  
Samuel Talkington ◽  
Santiago Grijalva ◽  
Matthew J. Reno ◽  
Joseph Azzolini

2021 ◽  
Author(s):  
Xiao-Yu Zhang ◽  
Chris Watkins ◽  
Stefanie Kuenzel

The purpose of feeder-level energy disaggregation is to decouple the net load measured at the feeder-head into various components. This technology is vital for power system utilities since increased visibility of controllable loads enables the realization of demand-side management strategies. However, energy disaggregation at the feeder level is difficult to realize since the high-penetration of embedded generation masks the actual demand and different loads are highly aggregated. In this paper, the solar energy at the grid supply point is separated from the net load at first via either an unsupervised upscaling method or the supervised gradient boosting regression tree (GBRT) method. To deal with the uncertainty of the load components, the probabilistic energy disaggregation models based on multi-quantile recurrent neural network model (multi-quantile long short-term memory (MQ-LSTM) model and multi-quantile gated recurrent unit (MQ-GRU) model) are proposed to disaggregate the demand load into controlled loads (TCLs), non-thermostatically controlled loads (non-TCLs), and non-controllable loads. A variety of relevant information, including feeder measurements, meteorological measurements, calendar information, is adopted as the input features of the model. Instead of providing point prediction, the probabilistic model estimates the conditional quantiles and provides prediction intervals. A comprehensive case study is implemented to compare the proposed model with other state-of-the-art models (multi-quantile convolutional neural network (MQ-CNN), quantile gradient boosting regression tree (Q-GBRT), Quantile Light gradient boosting machine (Q-LGB)) from training time, reliability, sharpness, and overall performance aspects. The result shows that the MQ-LSTM can estimate reliable and sharp Prediction Intervals for target load components. And it shows the best performance among all algorithms with the shortest training time. Finally, a transfer learning algorithm is proposed to overcome the difficulty to obtain enough training data, and the model is pre-trained via synthetic data generated from a public database and then tested on the local dataset. The result confirms that the proposed energy disaggregation model is transferable and can be applied to other feeders easily. <br>


2021 ◽  
Author(s):  
Xiao-Yu Zhang ◽  
Chris Watkins ◽  
Stefanie Kuenzel

The purpose of feeder-level energy disaggregation is to decouple the net load measured at the feeder-head into various components. This technology is vital for power system utilities since increased visibility of controllable loads enables the realization of demand-side management strategies. However, energy disaggregation at the feeder level is difficult to realize since the high-penetration of embedded generation masks the actual demand and different loads are highly aggregated. In this paper, the solar energy at the grid supply point is separated from the net load at first via either an unsupervised upscaling method or the supervised gradient boosting regression tree (GBRT) method. To deal with the uncertainty of the load components, the probabilistic energy disaggregation models based on multi-quantile recurrent neural network model (multi-quantile long short-term memory (MQ-LSTM) model and multi-quantile gated recurrent unit (MQ-GRU) model) are proposed to disaggregate the demand load into controlled loads (TCLs), non-thermostatically controlled loads (non-TCLs), and non-controllable loads. A variety of relevant information, including feeder measurements, meteorological measurements, calendar information, is adopted as the input features of the model. Instead of providing point prediction, the probabilistic model estimates the conditional quantiles and provides prediction intervals. A comprehensive case study is implemented to compare the proposed model with other state-of-the-art models (multi-quantile convolutional neural network (MQ-CNN), quantile gradient boosting regression tree (Q-GBRT), Quantile Light gradient boosting machine (Q-LGB)) from training time, reliability, sharpness, and overall performance aspects. The result shows that the MQ-LSTM can estimate reliable and sharp Prediction Intervals for target load components. And it shows the best performance among all algorithms with the shortest training time. Finally, a transfer learning algorithm is proposed to overcome the difficulty to obtain enough training data, and the model is pre-trained via synthetic data generated from a public database and then tested on the local dataset. The result confirms that the proposed energy disaggregation model is transferable and can be applied to other feeders easily. <br>


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4256
Author(s):  
Taeyoung Kim ◽  
Jinho Kim

Rooftop photovoltaic (PV) systems are usually behind the meter and invisible to utilities and retailers and, thus, their power generation is not monitored. If a number of rooftop PV systems are installed, it transforms the net load pattern in power systems. Moreover, not only generation but also PV capacity information is invisible due to unauthorized PV installations, causing inaccuracies in regional PV generation forecasting. This study proposes a regional rooftop PV generation forecasting methodology by adding unauthorized PV capacity estimation. PV capacity estimation consists of two steps: detection of unauthorized PV generation and estimation capacity of detected PV. Finally, regional rooftop PV generation is predicted by considering unauthorized PV capacity through the support vector regression (SVR) and upscaling method. The results from a case study show that compared with estimation without unauthorized PV capacity, the proposed methodology reduces the normalized root mean square error (nRMSE) by 5.41% and the normalized mean absolute error (nMAE) by 2.95%, It can be concluded that regional rooftop PV generation forecasting accuracy is improved.


2021 ◽  
Author(s):  
Ashling Leilaeioun

<p>As solar electricity generation increases, the daytime net load (total load less solar generation) decreases, reducing prices in the middle of the day. These low prices reduce motivation to invest in more solar electricity. In this study, the correlation between net load and price is quantified on a seasonal average basis, and used to predict resulting hourly price changes if demand can be shifted from evening peak hours to mid-day when solar generation is greatest. The results suggest such a strategy will be of economic benefit to solar generators by increasing the price at mid-day for all electricity delivered, while reducing the price and thus total expenditures for energy during evening peak hours, with a net overall savings for energy consumers. These financial benefits motivate solar plant owners and developers to promote load-shifting, both to increase the revenue from current solar plants and to create demand for more solar plants.</p>


Sign in / Sign up

Export Citation Format

Share Document