inward rectifiers
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 1)

H-INDEX

8
(FIVE YEARS 0)

EP Europace ◽  
2016 ◽  
pp. euw071 ◽  
Author(s):  
Markéta Bébarová ◽  
Zuzana Hořáková ◽  
Roman Kula

2014 ◽  
Vol 5 ◽  
Author(s):  
Victoria A. Baronas ◽  
Harley T. Kurata
Keyword(s):  

2012 ◽  
Vol 92 (4) ◽  
pp. 1777-1811 ◽  
Author(s):  
Rainer Hedrich

Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K+-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K+ channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.


2001 ◽  
Vol 33 (4) ◽  
pp. 625-638 ◽  
Author(s):  
A.N. Lopatin ◽  
C.G. Nichols
Keyword(s):  

1995 ◽  
Vol 212 (2) ◽  
pp. 657-663 ◽  
Author(s):  
F. Duprat ◽  
F. Lesage ◽  
E. Guillemare ◽  
M. Fink ◽  
J.P. Hugnot ◽  
...  

1995 ◽  
Vol 268 (3) ◽  
pp. C535-C556 ◽  
Author(s):  
M. Kukuljan ◽  
P. Labarca ◽  
R. Latorre

K+ channel-forming proteins can be grouped into three families that differ by the number of potential membrane-spanning segments. The largest of these families is composed of tetrameric channels with subunits containing six putative membrane-spanning segments (S1-S6). Inward rectifiers comprise a second family of K+ channels with subunits having two transmembrane domains (M1, M2). Monomers in the third family are proteins containing only one membrane-spanning segment, and they give origin to minK+ channels. Joining together segments S5 and S6 in the case of voltage-gated K+ channels and M1 and M2 in inward rectifiers, there is a highly conserved region with a hairpin shape called the H5 or P region. The P region, the loop connecting the S4 and S5 domains and the S6 transmembrane segment in Shaker-type K+ channels and the COOH-terminal in inward rectifiers, appears to play crucial roles in ion conduction. In Shaker K+ channels the NH2-terminal has been identified as responsible for fast inactivation (N-type inactivation). If the fast-inactivation gate is removed, a slower inactivation process persists, and its rate can be altered by mutations of amino acid residues forming part of the region in the neighborhood of the COOH-terminal (C-type inactivation). In this review we discuss the strategies followed to identify the different structures of K+ channels involved in ion conduction and inactivation processes and how they interplay.


1994 ◽  
Vol 139 (2) ◽  
Author(s):  
G.P. Findlay ◽  
S.D. Tyerman ◽  
A. Garrill ◽  
M. Skerrett
Keyword(s):  

1992 ◽  
Vol 99 (4) ◽  
pp. 615-644 ◽  
Author(s):  
M R Blatt

Intracellular microelectrode recordings and a two-electrode voltage clamp have been used to characterize the current carried by inward rectifying K+ channels of stomatal guard cells from the broadbean, Vicia faba L. Superficially, the current displayed many features common to inward rectifiers of neuromuscular and egg cell membranes. In millimolar external K+ concentrations (Ko+), it activated on hyperpolarization with half-times of 100-200 ms, showed no evidence of time- or voltage-dependent inactivation, and deactivated rapidly (tau approximately 10 ms) on clamping to 0 mV. Steady-state conductance-voltage characteristics indicated an apparent gating charge of 1.3-1.6. Current reversal showed a Nernstian dependence on Ko+ over the range 3-30 mM, and the inward rectifier was found to be highly selective for K+ over other monovalent cations (K+ greater than Rb+ greater than Cs+ much greater than Na+). Unlike the inward rectifiers of animal membranes, the current was blocked by charybdotoxin and alpha-dendrotoxin (Kd much less than 50 nM), as well as by tetraethylammonium chloride (K1/2 = 9.1 mM); gating of the guard cell K+ current was fixed to voltages near -120 mV, independent of Ko+, and the current activated only with supramillimolar K+ outside (EK+ greater than -120 mV). Most striking, however, was inward rectifier sensitivity to [H+] with the K+ current activated reversibly by mild acid external pH. Current through the K+ inward rectifier was found to be largely independent of intracellular pH and the current reversal (equilibrium) potential was unaffected by pHo from 7.4 to 5.5. By contrast, current through the K+ outward rectifier previously characterized in these cells (1988. J. Membr. Biol. 102:235) was largely insensitive to pHo, but was blocked reversibly by acid-going intracellular pH. The action of pHo on the K+ inward rectifier could not be mimicked by extracellular Ca2+ for which changes in activation, deactivation, and conductance were consonant with an effect on surface charge ([Ca2+] less than or equal to 1 mM). Rather, extracellular pH affected activation and deactivation kinetics disproportionately, with acid-going pHo raising the K+ conductance and shifting the conductance-voltage profile positive-going along the voltage axis and into the physiological voltage range. Voltage and pH dependencies for gating were consistent with a single, titratable group (pKa approximately 7 at -200 mV) residing deep within the membrane electric field and accessible from the outside.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document