scholarly journals On the difference of inverse coefficients of convex functions

Author(s):  
Young Jae Sim ◽  
Derek K. Thomas

AbstractLet f be analytic in the unit disk $${\mathbb {D}}=\{z\in {\mathbb {C}}:|z|<1 \}$$ D = { z ∈ C : | z | < 1 } , and $${\mathcal {S}}$$ S be the subclass of normalised univalent functions given by $$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$$ f ( z ) = z + ∑ n = 2 ∞ a n z n for $$z\in {\mathbb {D}}$$ z ∈ D . Let F be the inverse function of f defined in some set $$|\omega |\le r_{0}(f)$$ | ω | ≤ r 0 ( f ) , and be given by $$F(\omega )=\omega +\sum _{n=2}^{\infty }A_n \omega ^n$$ F ( ω ) = ω + ∑ n = 2 ∞ A n ω n . We prove the sharp inequalities $$-1/3 \le |A_4|-|A_3| \le 1/4$$ - 1 / 3 ≤ | A 4 | - | A 3 | ≤ 1 / 4 for the class $${\mathcal {K}}\subset {\mathcal {S}}$$ K ⊂ S of convex functions, thus providing an analogue to the known sharp inequalities $$-1/3 \le |a_4|-|a_3| \le 1/4$$ - 1 / 3 ≤ | a 4 | - | a 3 | ≤ 1 / 4 , and giving another example of an invariance property amongst coefficient functionals of convex functions.

Author(s):  
Young Jae Sim ◽  
Adam Lecko ◽  
Derek K. Thomas

AbstractLet f be analytic in the unit disk $${\mathbb {D}}=\{z\in {\mathbb {C}}:|z|<1 \}$$ D = { z ∈ C : | z | < 1 } , and $${{\mathcal {S}}}$$ S be the subclass of normalized univalent functions given by $$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$$ f ( z ) = z + ∑ n = 2 ∞ a n z n for $$z\in {\mathbb {D}}$$ z ∈ D . We give sharp bounds for the modulus of the second Hankel determinant $$ H_2(2)(f)=a_2a_4-a_3^2$$ H 2 ( 2 ) ( f ) = a 2 a 4 - a 3 2 for the subclass $$ {\mathcal F_{O}}(\lambda ,\beta )$$ F O ( λ , β ) of strongly Ozaki close-to-convex functions, where $$1/2\le \lambda \le 1$$ 1 / 2 ≤ λ ≤ 1 , and $$0<\beta \le 1$$ 0 < β ≤ 1 . Sharp bounds are also given for $$|H_2(2)(f^{-1})|$$ | H 2 ( 2 ) ( f - 1 ) | , where $$f^{-1}$$ f - 1 is the inverse function of f. The results settle an invariance property of $$|H_2(2)(f)|$$ | H 2 ( 2 ) ( f ) | and $$|H_2(2)(f^{-1})|$$ | H 2 ( 2 ) ( f - 1 ) | for strongly convex functions.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2040
Author(s):  
Young Jae Sim ◽  
Derek Keith Thomas

Let f be analytic in the unit disk D={z∈C:|z|<1}, and S be the subclass of normalized univalent functions with f(0)=0, and f′(0)=1. Let F be the inverse function of f, given by F(z)=ω+∑n=2∞Anωn for some |ω|≤r0(f). Let S*⊂S be the subset of starlike functions in D, and C the subset of convex functions in D. We show that −1≤|A3|−|A2|≤3 for f∈S, the upper bound being sharp, and sharp upper and lower bounds for |A3|−|A2| for the more important subclasses of S* and C, and for some related classes of Bazilevič functions.


Author(s):  
YOUNG JAE SIM ◽  
DEREK K. THOMAS

Let $f$ be analytic in the unit disk $\mathbb{D}=\{z\in \mathbb{C}:|z|<1\}$ and ${\mathcal{S}}$ be the subclass of normalised univalent functions given by $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$ for $z\in \mathbb{D}$ . We give sharp upper and lower bounds for $|a_{3}|-|a_{2}|$ and other related functionals for the subclass ${\mathcal{F}}_{O}(\unicode[STIX]{x1D706})$ of Ozaki close-to-convex functions.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1521
Author(s):  
Young Jae Sim ◽  
Derek K. Thomas

Let f be analytic in the unit disk D={z∈C:|z|<1}, and S be the subclass of normalized univalent functions given by f(z)=z+∑n=2∞anzn for z∈D. Let S*⊂S be the subset of starlike functions in D and C⊂S the subset of convex functions in D. We give sharp upper and lower bounds for |a3|−|a2| for some important subclasses of S* and C.


Author(s):  
Y. J. SIM ◽  
D. K. THOMAS

Abstract Let f be analytic in the unit disk $\mathbb {D}=\{z\in \mathbb {C}:|z|<1 \}$ and let ${\mathcal S}$ be the subclass of normalised univalent functions with $f(0)=0$ and $f'(0)=1$ , given by $f(z)=z+\sum _{n=2}^{\infty }a_n z^n$ . Let F be the inverse function of f, given by $F(\omega )=\omega +\sum _{n=2}^{\infty }A_n \omega ^n$ for $|\omega |\le r_0(f)$ . Denote by $ \mathcal {S}_p^{* }(\alpha )$ the subset of $ \mathcal {S}$ consisting of the spirallike functions of order $\alpha $ in $\mathbb {D}$ , that is, functions satisfying $$\begin{align*}{\mathrm{Re}} \ \bigg\{e^{-i\gamma}\dfrac{zf'(z)}{f(z)}\bigg\}>\alpha\cos \gamma, \end{align*}$$ for $z\in \mathbb {D}$ , $0\le \alpha <1$ and $\gamma \in (-\pi /2,\pi /2)$ . We give sharp upper and lower bounds for both $ |a_3|-|a_2| $ and $ |A_3|-|A_2| $ when $f\in \mathcal {S}_p^{* }(\alpha )$ , thus solving an open problem and presenting some new inequalities for coefficient differences.


2019 ◽  
Vol 19 (4) ◽  
pp. 671-685 ◽  
Author(s):  
Nak Eun Cho ◽  
Young Jae Sim ◽  
Derek K. Thomas

Abstract Let f be analytic in the unit disk $${\mathbb {D}}=\{z\in {\mathbb {C}}:|z|<1 \}$$D={z∈C:|z|<1}, and $${\mathcal {S}}$$S be the subclass of normalized univalent functions given by $$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$$f(z)=z+∑n=2∞anzn for $$z\in {\mathbb {D}}$$z∈D. We give bounds for $$| |a_3|-|a_2| | $$||a3|-|a2|| for the subclass $${\mathcal B}(\alpha ,i \beta )$$B(α,iβ) of generalized Bazilevič functions when $$\alpha \ge 0$$α≥0, and $$\beta $$β is real.


1993 ◽  
Vol 16 (2) ◽  
pp. 329-336 ◽  
Author(s):  
Khalida Inayat Noor

A functionf, analytic in the unit diskEand given by ,f(z)=z+∑k=2∞anzkis said to be in the familyKnif and only ifDnfis close-to-convex, whereDnf=z(1−z)n+1∗f,n∈N0={0,1,2,…}and∗denotes the Hadamard product or convolution. The classesKnare investigated and some properties are given. It is shown thatKn+1⫅KnandKnconsists entirely of univalent functions. Some closure properties of integral operators defined onKnare given.


2017 ◽  
Vol 101 (115) ◽  
pp. 143-149 ◽  
Author(s):  
Bogumiła Kowalczyk ◽  
Adam Lecko ◽  
H.M. Srivastava

We discuss the sharpness of the bound of the Fekete-Szego functional for close-to-convex functions with respect to convex functions. We also briefly consider other related developments involving the Fekete-Szego functional |a3 ??a22| (0 ? ? ? 1) as well as the corresponding Hankel determinant for the Taylor-Maclaurin coefficients {an}n?N\{1} of normalized univalent functions in the open unit disk D, N being the set of positive integers.


2021 ◽  
Vol 17 (5) ◽  
pp. 670-677
Author(s):  
Shaharuddin Cik Soh ◽  
Daud Mohamad ◽  
Huzaifah Dzubaidi

Let S denote the class of analytic and univalent functions in D, where D is defined as unit disk and having the Taylor representation form of S. We will determine the estimation for the Toeplitz determinants where the elements are the Taylor coefficients of the class close-to-convex functions in S.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Davood Alimohammadi ◽  
Ebrahim Analouei Adegani ◽  
Teodor Bulboacă ◽  
Nak Eun Cho

It is well-known that the logarithmic coefficients play an important role in the development of the theory of univalent functions. If S denotes the class of functions f z = z + ∑ n = 2 ∞ a n z n analytic and univalent in the open unit disk U , then the logarithmic coefficients γ n f of the function f ∈ S are defined by log f z / z = 2 ∑ n = 1 ∞ γ n f z n . In the current paper, the bounds for the logarithmic coefficients γ n for some well-known classes like C 1 + α z for α ∈ 0 , 1 and C V hpl 1 / 2 were estimated. Further, conjectures for the logarithmic coefficients γ n for functions f belonging to these classes are stated. For example, it is forecasted that if the function f ∈ C 1 + α z , then the logarithmic coefficients of f satisfy the inequalities γ n ≤ α / 2 n n + 1 , n ∈ ℕ . Equality is attained for the function L α , n , that is, log L α , n z / z = 2 ∑ n = 1 ∞ γ n L α , n z n = α / n n + 1 z n + ⋯ , z ∈ U .


Sign in / Sign up

Export Citation Format

Share Document