poisson geometry
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 18)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 27 (5) ◽  
Author(s):  
Chelsea Walton ◽  
Xingting Wang ◽  
Milen Yakimov

2021 ◽  
Author(s):  
Marius Crainic ◽  
Rui Fernandes ◽  
Ioan Mărcuţ
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1378
Author(s):  
Cristian Lăzureanu

In this paper we consider systems of three autonomous first-order differential equations x˙=f(x),x=(x,y,z),f=(f1,f2,f3) such that x(t)+y(t)+z(t) is constant for all t. We present some Hamilton–Poisson formulations and integrable deformations. We also analyze the case of Kolmogorov systems. We study from some standard and nonstandard Poisson geometry points of view the three-dimensional Lotka–Volterra system with constant population.


Author(s):  
Henrique Bursztyn ◽  
Inocencio Ortiz ◽  
Stefan Waldmann

Abstract We extend the notion of Morita equivalence of Poisson manifolds to the setting of formal Poisson structures, that is, formal power series of bivector fields $\pi =\pi _0 + \lambda \pi _1 +\cdots $ satisfying the Poisson integrability condition $[\pi ,\pi ]=0$. Our main result gives a complete description of Morita equivalent formal Poisson structures deforming the zero structure ($\pi _0=0$) in terms of $B$-field transformations, relying on a general study of formal deformations of Poisson morphisms and dual pairs. Combined with previous work on Morita equivalence of star products [ 5], our results link the notions of Morita equivalence in Poisson geometry and noncommutative algebra via deformation quantization.


Author(s):  
Shahn Majid ◽  
◽  
Liam Williams ◽  

We semiclassicalise the theory of quantum group principal bundles to the level of Poisson geometry. The total space X is a Poisson manifold with Poisson-compatible contravariant connection, the fibre is a Poisson-Lie group in the sense of Drinfeld with bicovariant Poisson-compatible contravariant connection, and the base has an inherited Poisson structure and Poisson-compatible contravariant connection. The latter are known to be the semiclassical data for a quantum differential calculus. The theory is illustrated by the Poisson level of the q-Hopf fibration on the standard q-sphere. We also construct the Poisson level of the spin connection on a principal bundle.


2021 ◽  
Vol 0 (0) ◽  
pp. 0 ◽  
Author(s):  
Miguel Ángel Evangelista-Alvarado ◽  
José Crispín Ruíz-Pantaleón ◽  
Pablo Suárez-Serrato

<p style='text-indent:20px;'>We present a computational toolkit for (local) Poisson-Nijenhuis calculus on manifolds. Our Python module $\textsf{PoissonGeometry}$ implements our algorithms and accompanies this paper. Examples of how our methods can be used are explained, including gauge transformations of Poisson bivector in dimension 3, parametric Poisson bivector fields in dimension 4, and Hamiltonian vector fields of parametric families of Poisson bivectors in dimension 6.</p>


Author(s):  
Miguel Evangelista–Alvarado ◽  
José Crispín Ruíz–Pantaleón ◽  
Pablo Suárez–Serrato

Sign in / Sign up

Export Citation Format

Share Document