vomeronasal system
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 13)

H-INDEX

35
(FIVE YEARS 3)

Author(s):  
Lucia F. Jacobs

To make maps from airborne odours requires dynamic respiratory patterns. I propose that this constraint explains the modulation of memory by nasal respiration in mammals, including murine rodents (e.g. laboratory mouse, laboratory rat) and humans. My prior theories of limbic system evolution offer a framework to understand why this occurs. The answer begins with the evolution of nasal respiration in Devonian lobe-finned fishes. This evolutionary innovation led to adaptive radiations in chemosensory systems, including the emergence of the vomeronasal system and a specialization of the main olfactory system for spatial orientation. As mammals continued to radiate into environments hostile to spatial olfaction (air, water), there was a loss of hippocampal structure and function in lineages that evolved sensory modalities adapted to these new environments. Hence the independent evolution of echolocation in bats and toothed whales was accompanied by a loss of hippocampal structure (whales) and an absence of hippocampal theta oscillations during navigation (bats). In conclusion, models of hippocampal function that are divorced from considerations of ecology and evolution fall short of explaining hippocampal diversity across mammals and even hippocampal function in humans. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.


Author(s):  
Mateo V. Torres ◽  
Irene Ortiz-Leal ◽  
Paula R. Villamayor ◽  
Andrea Ferreiro ◽  
José Luis Rois ◽  
...  

AbstractThe study of the α-subunit of Gi2 and Go proteins in the accessory olfactory bulb (AOB) was crucial for the identification of the two main families of vomeronasal receptors, V1R and V2R. Both families are expressed in the rodent and lagomorph AOBs, according to a segregated model characterized by topographical anteroposterior zonation. Many mammal species have suffered from the deterioration of the Gαo pathway and are categorized as belonging to the uniform model. This scenario has been complicated by characterization of the AOB in the tammar wallaby, Notamacropus eugenii, which appears to follow a third model of vomeronasal organization featuring exclusive Gαo protein expression, referred to as the intermediate model, which has not yet been replicated in any other species. Our morphofunctional study of the vomeronasal system (VNS) in Bennett’s wallaby, Notamacropus rufogriseus, provides further information regarding this third model of vomeronasal transduction. A comprehensive histological, lectin, and immunohistochemical study of the Bennett’s wallaby VNS was performed. Anti-Gαo and anti-Gαi2 antibodies were particularly useful because they labeled the transduction cascade of V2R and V1R receptors, respectively. Both G proteins showed canonical immunohistochemical labeling in the vomeronasal organ and the AOB, consistent with the anterior–posterior zonation of the segregated model. The lectin Ulex europaeus agglutinin selectively labeled the anterior AOB, providing additional evidence for the segregation of vomeronasal information in the wallaby. Overall, the VNS of the Bennett’s wallaby shows a degree of differentiation and histochemical and neurochemical diversity comparable to species with greater VNS development. The existence of the third intermediate type in vomeronasal information processing reported in Notamacropus eugenii is not supported by our lectin-histochemical and immunohistochemical findings in Notamacropus rufogriseus.


2021 ◽  
Author(s):  
Michal Yoles-Frenkel ◽  
Stephen David Shea ◽  
Ian G Davison ◽  
Yoram Ben-Shaul

Sensory systems must balance the value of efficient coding schemes against the need to update specific memorized representations without perturbing other memories. Here we describe a unique solution to this challenge that is implemented by the vomeronasal system (VNS) to encode and remember multiple conspecific individuals as part of the Bruce Effect (BE). In the BE, exposure of a pregnant female mouse to the odors of an unfamiliar male leads to failure of the pregnancy (pregnancy block) via the VNS. Following mating and sensory exposure, however, the female becomes protected from a pregnancy block by the stud individual. While this form of natural learning has been proposed to depend on changes in the representation of his odors in her accessory olfactory bulb (AOB), a key VNS structure, there are no direct comparisons of in vivo sensory responses before and after imprinting. It has further been suggested that these changes simply render the AOB insensitive to stud odors. However, the combinatorial odor code used by the AOB and the significant overlap in the odor composition of different males means that silencing responses to one individual is likely to degrade responses to others, posing potential problems for more general sensory encoding. To identify the neuronal correlates of learning in the context of the BE, we recorded extracellular responses of AOB neurons in vivo in mated and unmated female mice upon controlled presentation of urinary chemosignals, including urine from both the stud and males of a distinct strain. We find that while initial sensory responses in the AOB (within a timescale required to guide social interactions) remain stable, responses to extended stimulation (as required for eliciting the pregnancy block) display selective attenuation of stud-responsive neurons. Based on our results, we propose a model that reconciles the formation of strong, selective memories with the need to sustain robust representational bandwidth by noting a distinction between the representations of brief and extended stimuli. This temporal disassociation allows attenuation of slow-acting endocrine processes in a stimulus-specific manner, without compromising consistent ongoing representations of stimuli that guide behavior.


2021 ◽  
Author(s):  
Mateo V. TORRES ◽  
Irene ORTIZ-LEAL ◽  
Paula R. VILLAMAYOR ◽  
Andrea FERREIRO ◽  
José Luis ROIS ◽  
...  

Abstract The study of the α-subunit of Gi2 and Go proteins in the accessory olfactory bulb (AOB) was crucial for the identification of the two main families of vomeronasal receptors, V1R and V2R. Both families are expressed in the rodent and lagomorph AOBs, according to a segregated model characterized by topographical anteroposterior zonation. Many mammal species have suffered from the deterioration of the Gαo pathway and are categorized as belonging to the uniform model. This scenario has been complicated by characterization of the AOB in the tammar wallaby, Macropus eugenii, which appears to follow a third model of vomeronasal organization featuring exclusive Gαo protein expression, referred to as the intermediate model, which has not yet been replicated in any other species. Our morphofunctional study of the vomeronasal system (VNS) in Bennett’s wallaby, Macropus rufogriseus, provides further information regarding this third model of vomeronasal transduction.A comprehensive histological, lectin, and immunohistochemical study of the Bennett’s wallaby VNS was performed. Anti-Gαo and anti-Gαi2 antibodies were particularly useful because they labeled the transduction cascade of V2R and V1R receptors, respectively. Both G proteins showed canonical immunohistochemical labeling in the vomeronasal organ and the AOB, consistent with the anterior-posterior zonation of the segregated model. The lectin Ulex europaeus agglutinin selectively labeled the anterior AOB, providing additional evidence for the segregation of vomeronasal information in the wallaby.Overall, the VNS of the Bennett’s wallaby shows a degree of differentiation and histochemical and neurochemical diversity comparable to species with greater VNS development, which does not support the existence of a third “intermediate” type of vomeronasal information processing.


2021 ◽  
Vol 15 ◽  
Author(s):  
Anne-Charlotte Trouillet ◽  
Chantal Moussu ◽  
Kevin Poissenot ◽  
Matthieu Keller ◽  
Lutz Birnbaumer ◽  
...  

In mice, social behaviors are largely controlled by the olfactory system. Pheromone detection induces naïve virgin females to retrieve isolated pups to the nest and to be sexually receptive to males, but social experience increases the performance of both types of innate behaviors. Whether animals are intrinsically sensitive to the smell of conspecifics, or the detection of olfactory cues modulates experience for the display of social responses is currently unclear. Here, we employed mice with an olfactory-specific deletion of the G protein Gαi2, which partially eliminates sensory function in the vomeronasal organ (VNO), to show that social behavior in female mice results from interactions between intrinsic mechanisms in the vomeronasal system and experience-dependent plasticity. In pup- and sexually-naïve females, Gαi2 deletion elicited a reduction in pup retrieval behavior, but not in sexual receptivity. By contrast, experienced animals showed normal maternal behavior, but the experience-dependent increase in sexual receptivity was incomplete. Further, lower receptivity was accompanied by reduced neuronal activity in the anterior accessory olfactory bulb and the rostral periventricular area of the third ventricle. Therefore, neural mechanisms utilize intrinsic sensitivity in the mouse vomeronasal system and enable plasticity to display consistent social behavior.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mateo V. Torres ◽  
Irene Ortiz-Leal ◽  
Paula R. Villamayor ◽  
Andrea Ferreiro ◽  
José Luis Rois ◽  
...  

2020 ◽  
Vol 12 (6) ◽  
pp. 766-778 ◽  
Author(s):  
Zicong Zhang ◽  
Masato Nikaido

Abstract The vomeronasal organ (VNO) plays a key role in sensing pheromonal cues, which elicits social and reproductive behaviors. Although the VNO is highly conserved across mammals, it has been lost in some species that have evolved alternate sensing systems during diversification. In this study, we investigate a newly identified VNO-specific gene, ancV1R, in the extant 261 species of mammals to examine the correlation between genotype (ancV1R) and phenotype (VNO). As a result, we found signatures for the relaxation of purifying selection (inactivating mutations and the elevation of dN/dS) on ancV1Rs in VNO-lacking mammals, such as catarrhine primates, cetaceans, the manatees, and several bat lineages, showing the distinct correlation between genotype and phenotype. Interestingly, we further revealed signatures for the relaxation of purifying selection on ancV1R in true seals, otters, the fossa, the owl monkey, and alcelaphine antelopes in which the existence of a functional VNO is still under debate. Our additional analyses on TRPC2, another predictive marker gene for the functional VNO, showed a relaxation of purifying selection, supporting the possibility of VNO loss in these species. The results of our present study invite more in-depth neuroanatomical investigation in mammals for which VNO function remains equivocal.


2019 ◽  
Vol 286 (1910) ◽  
pp. 20191828 ◽  
Author(s):  
Takushi Kishida ◽  
Yasuhiro Go ◽  
Shoji Tatsumoto ◽  
Kaori Tatsumi ◽  
Shigehiro Kuraku ◽  
...  

Marine amniotes, a polyphyletic group, provide an excellent opportunity for studying convergent evolution. Their sense of smell tends to degenerate, but this process has not been explored by comparing fully aquatic species with their amphibious relatives in an evolutionary context. Here, we sequenced the genomes of fully aquatic and amphibious sea snakes and identified repertoires of chemosensory receptor genes involved in olfaction. Snakes possess large numbers of the olfactory receptor ( OR ) genes and the type-2 vomeronasal receptor ( V2R ) genes, and expression profiling in the olfactory tissues suggests that snakes use the ORs in the main olfactory system (MOS) and the V2Rs in the vomeronasal system (VNS). The number of OR genes has decreased in sea snakes, and fully aquatic species lost MOS which is responsible for detecting airborne odours. By contrast, sea snakes including fully aquatic species retain a number of V2R genes and a well-developed VNS for smelling underwater. This study suggests that the sense of smell also degenerated in sea snakes, particularly in fully aquatic species, but their residual olfactory capability is distinct from that of other fully aquatic amniotes. Amphibious species show an intermediate status between terrestrial and fully aquatic snakes, implying their importance in understanding the process of aquatic adaptation.


Sign in / Sign up

Export Citation Format

Share Document