soil slurry
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 20)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Naomi Gevaerd de Souza ◽  
Akshay Chandrashekar Parenky ◽  
Hiep Hoang Nguyen ◽  
Junha Jeon ◽  
Hyeok Choi
Keyword(s):  

2021 ◽  
pp. 1-34
Author(s):  
Abdullateef Omeiza Ibrahim ◽  
Yao Huang ◽  
Hui Liu ◽  
Nasiru Abba Mustapha
Keyword(s):  

Chemosphere ◽  
2021 ◽  
pp. 132761
Author(s):  
Guilu Zeng ◽  
Rumin Yang ◽  
Zhengyuan Zhou ◽  
Jingyao Huang ◽  
Muhammad Danish ◽  
...  

2021 ◽  
Vol 9 (10) ◽  
pp. 2146
Author(s):  
Franziska Maria Feller ◽  
Sebastian Eilebrecht ◽  
Ruslan Nedielkov ◽  
Onur Yücel ◽  
Julia Alvincz ◽  
...  

Bile salts such as cholate are steroid compounds from the digestive tracts of vertebrates, which enter the environment upon excretion, e.g., in manure. Environmental bacteria degrade bile salts aerobically via two pathway variants involving intermediates with Δ1,4- or Δ4,6-3-keto-structures of the steroid skeleton. Recent studies indicated that degradation of bile salts via Δ4,6-3-keto intermediates in Sphingobium sp. strain Chol11 proceeds via 9,10-seco cleavage of the steroid skeleton. For further elucidation, the presumptive product of this cleavage, 3,12β-dihydroxy-9,10-seco-androsta-1,3,5(10),6-tetraene-9,17-dione (DHSATD), was provided to strain Chol11 in a co-culture approach with Pseudomonas stutzeri Chol1 and as purified substrate. Strain Chol11 converted DHSATD to the so far unknown compound 4-methyl-3-deoxy-1,9,12-trihydroxyestra-1,3,5(10)7-tetraene-6,17-dione (MDTETD), presumably in a side reaction involving an unusual ring closure. MDTETD was neither degraded by strains Chol1 and Chol11 nor in enrichment cultures. Functional transcriptome profiling of zebrafish embryos after exposure to MDTETD identified a significant overrepresentation of genes linked to hormone responses. In both pathway variants, steroid degradation intermediates transiently accumulate in supernatants of laboratory cultures. Soil slurry experiments indicated that bacteria using both pathway variants were active and also released their respective intermediates into the environment. This instance could enable the formation of recalcitrant steroid metabolites by interspecies cross-feeding in agricultural soils.


Author(s):  
Hester van Dijk ◽  
Thomas Kaupper ◽  
Clemens Bothe ◽  
Hyo Jung Lee ◽  
Paul L. E. Bodelier ◽  
...  

AbstractAmmonium-induced stimulatory, inhibitory, and/or neutral effects on soil methane oxidation have been attributable to the ammonium concentration and mineral forms, confounded by other edaphic properties (e.g., pH, salinity), as well as the site-specific composition of the methanotrophic community. We hypothesize that this inconsistency may stem from the discrepancy in the cation adsorption capacity of the soil. We postulate that the effects of ammonium on the methanotrophic activity in soil are more accurately portrayed by relating methane uptake rates to the soluble ammonium (bioavailable), rather than the exchangeable (total) ammonium. To reduce adsorption (exchangeable) sites for ammonium in a paddy soil, two successive pre-incubation steps were introduced resulting in a 1000-fold soil dilution (soil enrichment), to be compared to a soil slurry (tenfold dilution) incubation. Ammonium was supplemented as NH4Cl at 0.5–4.75gL−1 after pre-incubation. While NH4Cl significantly stimulated the methanotrophic activity at all concentrations in the soil slurry incubation, methane uptake showed a dose-dependent effect in the soil enrichment. The trend in methane uptake could be explained by the soluble ammonium concentration, which was proportionate to the supplemented ammonium in the soil enrichment. In the soil slurry incubation, a fraction (36–63%) of the supplemented ammonium was determined to be adsorbed to the soil. Accordingly, Methylosarcina was found to predominate the methanotrophic community after the incubation, suggesting the relevance of this methanotroph at elevated ammonium levels (< 3.25gL−1 NH4Cl). Collectively, our results showed that the soluble, rather than the exchangeable ammonium concentration, is relevant when determining the effects of ammonium on methane oxidation, but this does not exclude other (a)biotic factors concurrently influencing methanotrophic activity.


2021 ◽  
Vol 276 ◽  
pp. 01021
Author(s):  
Kai Peng ◽  
Guohui Wang ◽  
Yaolai Liu ◽  
Xiaoliang Wang ◽  
Dong Liu ◽  
...  

In projects, mixed soil slurry between cut-off wall and coarse-grained soil always exists. It may influence on or change mechanical properties of interface between coarse-grained soil and structure. The mechanical behaviors of the interface between coarse-grained soil and concrete were investigated by simple shear tests under mixed soil slurry. The significant dilatancy and stress-strain softening can be achieved through the results, which also indicate that the cement content play an important role in the shear strength of the interface. The peak strength and the position when the dilatancy occurs are related to both normal stress and cement content. An elasto-plastic constitutive model for interface considering mixed soil slurry was formulated in the framework of generalized potential theory. The entire model parameters can be identified by experimental tests. Finally, the predictions of the model have been compared with experimental results, and results show the model is reasonable and practical.


2020 ◽  
pp. AEM.02301-20
Author(s):  
Jin Chang ◽  
Daehyun Daniel Kim ◽  
Jeremy D. Semrau ◽  
Juyong Lee ◽  
Hokwan Heo ◽  
...  

Unique means of copper scavenging have been identified in proteobacterial methanotrophs, particularly the use of methanobactin, a novel ribosomally synthesized post-translationally modified polypeptide that binds copper with very high affinity. The possibility that copper sequestration strategies of methanotrophs may interfere with copper uptake of denitrifiers in situ and thereby enhance N2O emissions was examined using a suite of laboratory experiments performed with rice paddy microbial consortia. Addition of purified methanobactin from Methylosinus trichosporium OB3b to denitrifying rice paddy soil microbial consortia resulted in substantially increased N2O production, with more pronounced responses observed for soils with lower copper content. The N2O emission-enhancing effect of the soil’s native mbnA-expressing Methylocystaceae methanotrophs on the native denitrifiers was then experimentally verified with a Methylocystaceae-dominant chemostat culture prepared from a rice paddy microbial consortium as the inoculum. Lastly, with microcosms amended with varying cell numbers of methanobactin-producing Methylosinus trichosporium OB3b before CH4 enrichment, microbiomes with different ratios of methanobactin-producing Methylocystaceae to gammaproteobacterial methanotrophs incapable of methanobactin production were simulated. Significant enhancement of N2O production from denitrification was evident in both Methylocystaceae-dominant and Methylococcaceae-dominant enrichments, albeit to a greater extent in the former, signifying the comparative potency of methanobactin-mediated copper sequestration while implying the presence of alternative copper abstraction mechanisms for Methylococcaceae. These observations support that copper-mediated methanotrophic enhancement of N2O production from denitrification is plausible where methanotrophs and denitrifiers cohabit.IMPORTANCE Proteobacterial methanotrophs, groups of microorganisms that utilize methane as source of energy and carbon, have been known to utilize unique mechanisms to scavenge copper, namely utilization of methanobactin, a polypeptide that binds copper with high affinity and specificity. Previously the possibility that copper sequestration by methanotrophs may lead to alteration of cuproenzyme-mediated reactions in denitrifiers and consequently increase emission of potent greenhouse gas N2O has been suggested in axenic and co-culture experiments. Here, a suite of experiments with rice paddy soil slurry cultures with complex microbial compositions were performed to corroborate that such copper-mediated interplay may actually take place in environments co-habited by diverse methanotrophs and denitrifiers. As spatial and temporal heterogeneity allow for spatial coexistence of methanotrophy (aerobic) and denitrification (anaerobic) in soils, the results from this study suggest that this previously unidentified mechanism of N2O production may account for significant proportion of N2O efflux from agricultural soils.


2020 ◽  
Vol 15 (3) ◽  
pp. 479-486
Author(s):  
Yoh TAKAHATA ◽  
Madoka UMINO ◽  
Syunsuke KONDO ◽  
Masanori NEGISHI

2020 ◽  
Author(s):  
Jin Chang ◽  
Daehyun Daniel Kim ◽  
Jeremy D. Semrau ◽  
Juyong Lee ◽  
Hokwan Heo ◽  
...  

AbstractUnique means of copper scavenging have been identified in proteobacterial methanotrophs, particularly the use of methanobactin, a novel ribosomally synthesized post-translationally modified polypeptide that binds copper with very high affinity. The possibility that copper sequestration strategies of methanotrophs may interfere with copper uptake of denitrifiers in situ and thereby enhance N2O emissions was examined using a suite of laboratory experiments performed with rice paddy microbial consortia. Addition of purified methanobactin from Methylosinus trichosporium OB3b to denitrifying rice paddy soil microbial consortia resulted in substantially increased N2O production, with more pronounced responses observed for soils with lower copper content. The N2O emission-enhancing effect of the soil’s native mbnA-expressing Methylocystaceae methanotrophs on the native denitrifiers was then experimentally verified with a Methylocystaceae-dominant chemostat culture prepared from a rice paddy microbial consortium as the inoculum. Lastly, with microcosms amended with varying cell numbers of methanobactin-producing Methylosinus trichosporium OB3b before CH4 enrichment, microbiomes with different ratios of methanobactin-producing Methylocystaceae to gammaproteobacterial methanotrophs incapable of methanobactin production were simulated. Significant enhancement of N2O production from denitrification was evident in both Methylocystaceae-dominant and Methylococcaceae-dominant enrichments, albeit to a greater extent in the former, signifying the comparative potency of methanobactin-mediated copper sequestration while implying the presence of alternative copper abstraction mechanisms for Methylococcaceae. These observations support that copper-mediated methanotrophic enhancement of N2O production from denitrification is plausible where methanotrophs and denitrifiers cohabit.ImportanceProteobacterial methanotrophs, groups of microorganisms that utilize methane as source of energy and carbon, have been known to utilize unique mechanisms to scavenge copper, namely utilization of methanobactin, a polypeptide that binds copper with high affinity and specificity. Previously the possibility that copper sequestration by methanotrophs may lead to alteration of cuproenzyme-mediated reactions in denitrifiers and consequently increase emission of potent greenhouse gas N2O has been suggested in axenic and co-culture experiments. Here, a suite of experiments with rice paddy soil slurry cultures with complex microbial compositions were performed to corroborate that such copper-mediated interplay may actually take place in environments co-habited by diverse methanotrophs and denitrifiers. As spatial and temporal heterogeneity allow for spatial coexistence of methanotrophy (aerobic) and denitrification (anaerobic) in soils, the results from this study suggest that this previously unidentified mechanism of N2O production may account for significant proportion of N2O efflux from agricultural soils.


Sign in / Sign up

Export Citation Format

Share Document