cement content
Recently Published Documents


TOTAL DOCUMENTS

572
(FIVE YEARS 235)

H-INDEX

24
(FIVE YEARS 5)

Author(s):  
Pranav Andraskar

Abstract: Concrete is the most common used material for construction &their design consumes almost the total cement production in the world. The use of large quantities of cement produces increasing CO2 emission and as a consequence the greenhouse effect. A method to reduce the cement content in the concrete mixes is the use of GGBS, Metakaolin Nano-Silica. This project aims to present the state of GGBS, Metakaolin& Nano-Silica's effect on the workability and mechanical properties of concrete and to find out the economy of the experiment as compared to convential concrete. Concrete has occupied an important place in construction industry in the past few decades and it is used widely in all types of constructions ranging from small buildings to large infrastructural dams or reservoirs.. Keywords: GGBFS, Mechanical Properties, Workability, Economy


2022 ◽  
Vol 1048 ◽  
pp. 376-386
Author(s):  
M.S. Riyana ◽  
Dhanya Sathyan ◽  
M.K. Haridharan

SCC (Self compacting concrete) can fill formwork and encloses reinforcing bars under gravity and maintains homogeneity without vibration. SCC shortens the period of construction, guarantees compaction in confined zones, moreover terminates noise due to vibration. The wide spread application of SCC is restricted because of the high cost for the production of SCC with high cement content and chemical admixtures. In order to make the production of SCC economical, and to reduce the high cement content the Ordinary Portland Cement in SCC can be blended with pozzolanic materials like rice husk ash and supplementary cementitious materials like fly ash. In this paper the fresh state properties and mechanical properties such as compressive strength, split tensile strength and flexural strength of SCC with ternary blends of rice husk ash (RHA) and fly ash (FA) were studied. For this purpose, different mixes were prepared by replacing Ordinary Portland Cement (OPC) with 5%, 10%, 15% and 20% of rice husk ash (RHA) and the percentage of addition of fly ash (FA) is fixed as 15% for all these mixes. It was observed that the specimen incorporating 10% of rice husk ash (RHA) and 15% of fly ash (FA) as ternary blend exhibits better mechanical properties such as: Compressive, split tensile and flexural strengths at 28 days of age as compared to traditional mix of SCC without RHA (Rice Husk Ash) and FA (Fly Ash). This research demonstrates that the ideal percentage for a mixture of rice husk ash (RHA) and fly ash as ternary blend is 10% and 15% respectively.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Chukwuka Ifediniru ◽  
Nnamdi E. Ekeocha

AbstractSoils with poor shear strength and high compressibility underlie the wetlands of southern Nigeria. They are susceptible to intolerable settlements and account for greater than 60% of the soils in the region. While requiring embankments for any infrastructure construction, these weak soils pose significant threat to the construction and service life of highway pavements in southeastern Nigeria. Therefore, this research investigates shear strength improvement of a highway embankment’s weak subgrade soil after mass stabilization of soil with 6 and 10% Portland cement. The factor of safety against shear failure of the embankment was analyzed for un-stabilized subgrade and then cement-stabilized subgrade. The analysis was carried out for embankment heights of 4, 5, 6 and 7 m using the limit equilibrium method. Thick soft clayey silt with Cu range of 9 to 15 kPa underlay the embankment, upon improvement, the Cu of 154 and 208 kPa was obtained for 6 and 10% stabilization respectively. The FoS for the embankment on Un-stabilized soil ranged from 0.88 for a 7 m embankment to 1.2 for a 4 m embankment. The FoS after mass stabilization of 1 to 5 m soil ranged between 1.77 and 5.22 for the different embankment heights. Stability was better improved as depth of mass stabilization and cement content increased. A linear relationship was observed to exist between the cement content, strength of the improved soils, stabilization depth and the factor of safety.


2022 ◽  
Vol 2153 (1) ◽  
pp. 012007
Author(s):  
Y W Yung-Vargas ◽  
H A Rondón-Quintana ◽  
J E Córdoba-Maquilón

Abstract Reclaimed asphalt pavements are obtained from existing pavements through recovery techniques and are used for new asphalt mixtures production with the inclusion of virgin aggregates and asphalt cement, constituting environmentally friendly mixtures at a lower total cost, by requiring fewer quantities of new materials. This research, unlike the studies found on the subject, focuses on the study of reclaimed asphalt pavement by analyzing its granulometric distribution and asphalt cement content. For this purpose, representative reclaimed asphalt pavement samples were taken from four Colombia cities, to verify their heterogeneity. The obtained reclaimed asphalt pavement was analyzed in the laboratory, to obtain the material granulometric distribution, through extraction and asphalt content tests, following Colombian regulations from the “Instituto Nacional de Vías”. The results show that the granulometry of all cities has a central tendency (average) that moves towards an upper limit in the 2 mm particles. When analyzing the granulometry separately of the four cities, it is observed that they present a different trend in their granulometry, which shows their heterogeneity. The asphalt cement content presented values between 4.0% and 5.0%.


2021 ◽  
Vol 12 (1) ◽  
pp. 364
Author(s):  
Thathsarani Kannangara ◽  
Maurice Guerrieri ◽  
Sam Fragomeni ◽  
Paul Joseph

Geopolymer concrete is a valuable and alternative type of concrete that is free of traditional cement. Generally, geopolymer concretes require a source material, which is rich in silicon and aluminum. Furthermore, fly ash-based geopolymer concretes have been proven to have superior fire resistance, primarily due to their ceramic properties, and are inherently environmentally-friendly given their zero-cement content. This paper presents the effects on initial evaporation on the performance of fly ash-based geopolymer pastes after exposure to elevated temperatures of 400 °C and 800 °C. The fly ash (FA) samples used in the present study included: Gladstone and Gladstone/Callide. The results for sealed samples placed in the oven during curing were much more consistent than the samples that were not kept covered. In addition, Gladstone fly ash-based geopolymer samples that were sealed recorded an initial maximum compressive strength reading of ca. 75 MPa, while sealed Gladstone/Callide fly ash-based geopolymer samples, of the same mix design, only recorded an initial maximum compressive strength reading of ca. 50 MPa (both subjected to oven curing at 60 °C for 24 h). However, Gladstone/Callide fly ash-based geopolymer samples exhibited a significant strength gain, ca. 90 MPa, even after being subjected to 400 °C.


2021 ◽  
Vol 12 (1) ◽  
pp. 342
Author(s):  
Xinpei Yu ◽  
Hongbin Xiao ◽  
Zhenyu Li ◽  
Junfeng Qian ◽  
Shenping Luo ◽  
...  

The soil water characteristic curve and microstructure evolution of unsaturated expansive soil improved by microorganisms in Nanning, Guangxi were studied by means of filter paper method and scanning electron microscope imaging (SEM). Based on Fredlung & Xing model, the influence law of different cement content on the soil water characteristic curve of improved expansive soil is proved. According to the analysis of SEM test results, the influence mechanism of MICP method on the engineering characteristics of improved expansive soil is revealed. The results show that with the increase of cement content, the saturated water content and residual water content of the improved expansive soil gradually increased. At the same time, the water stability gradually increased while the air inlet value gradually decreased. The improved expansive soil changes from the superposition of flat particles and flake particles to the contact between spherical particles and flake particles, which indicates that the aggregate increases significantly. With the increase of the content of cement solution, the contact between particles tends to be smooth and the soil pores gradually tend to be evenly distributed. The particle size and microstructure of soil particles was changed and the connection between particles was enhanced in the improved expansive soil. Eventually the strength and water stability of expansive soil were improved. The conclusions above not only provide a theoretical basis for the in-depth study of engineering characteristics of unsaturated expansive soil improved by MICP method, but also offer theoretical evidence for perfecting engineering technology of expansive soil improved by MICP method.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 86
Author(s):  
Zhanchen Li ◽  
Huaqiang Yuan ◽  
Faliang Gao ◽  
Hongzhi Zhang ◽  
Zhi Ge ◽  
...  

This paper aims to study the feasibility of low cement content foamed concrete using waste lime mud (LM) and fly ash (FA) as mineral additives. The LM/FA ratio was first optimized based on the compressive strength. Isothermal calorimetry test, ESEM, and XRD were used to investigate the role of LM during hydration. Afterward, the optimized LM/FA ratio (1/5) was used to design foamed concrete with various wet densities (600, 700, 800 and 900 kg/m3) and LM–FA dosages (0%, 50%, 60%, 70% and 80%). Flowability measurements and mechanical measurements including compressive strength, flexural strength, splitting strength, elastic modulus, and California bearing ratio were conducted. The results show that the foamed concretes have excellent workability and stability with flowability within 170 and 190 mm. The high alkalinity of LM accelerated the hydration of FA, thereby increasing the early strength. The significant power functions were fitted for the relationships between flexural/splitting and compressive strength with all correlation coefficients (R2) larger with 0.95. The mechanical properties of the foamed concrete increased with the density increasing or LM–FA dosage decreasing. The compressive strength, tensile strength, CBR of all prepared foamed concretes were higher than the minimum requirements of 0.8 and 0.15 MPa and 8%, respectively in the standard.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2059
Author(s):  
Xiaopeng Peng ◽  
Lijie Guo ◽  
Guangsheng Liu ◽  
Xiaocong Yang ◽  
Xinzheng Chen

Previous studies have found that the strength of in situ cemented tailings backfill usually presents an S-shaped distribution, which decreases first, then increases, and decreases thereafter along the direction of slurry flow. In this study, to explore the factors determining the distribution, a similar model test of cemented tailings backfill was carried out. The distribution law of grain size composition and the cement content of backfill materials along the flow direction were experimentally studied, and the comprehensive factor influencing the strength distribution was analyzed. The results show that, firstly, near the feeding point, there are more coarse particles, whereas the content of fine particles is higher farther away. The measured maximum median particle size can be more than three times the minimum value. Secondly, the cement content increases gradually along the flow direction and reaches the peak at the end of the model, which can be more than twice the minimum value, indicating that the degree of segregation is significant. Thirdly, the strength distribution of cemented backfills is comprehensively determined by both the particle size distribution (PSD) and the cement content. The maximum value appears neither at the point with peak median particle size, nor at the point with the highest cement content. Lastly, there is a strong linear correlation between the strength of cemented backfills and the strength factor (SF), which is defined as the product of the uniformity coefficient and cement content of filling materials, indicating that the SF can be used to quantitatively reflect the comprehensive effects of PSD and cement content on the strength. As SF is a comprehensive quantitative index reflecting the distribution of strength, it will be further studied in later research to acquire more experimental results of the relationship between sample strength and SF, which will be meaningful for the quality evaluation of in situ cemented backfills, and the optimization of backfill system.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yuan Chai ◽  
Dai-Ping Jiang ◽  
Fu-Jiang Wang ◽  
Hai-Bo Lyu

Calcareous sand is widespread around Nansha Islands, South China Sea. In oceanic and coastal engineering, calcareous sand is usually used as a building foundation and backfill material for airport runway embankments. The engineering characteristics of calcareous sand is different from terrigenous sand because of its irregular grain shape, lower particle strength, and internal voids, which have caused many engineering problems in the last decades. Cement-stabilized soil, as a common foundation reinforcement method, can solve these engineering problems and improve the foundation strength effectively. Therefore, it is very important to estimate the engineering characteristics of cement-stabilized calcareous sand foundations. In this paper, the basic engineering characteristics, bearing capacity, and deformational behavior of calcareous sand were studied by carrying out a series of tests on cement-stabilized calcareous sand. It is found that: (1) the uniaxial compression strength of calcareous sand is higher than that of Guangzhou soft soil but lower than that of filter medium quartz sand; (2) the deformation of the calcareous sand under compression is mainly plastic, and the elastic deformation gradually increases with increasing cement content; (3) the apparent cohesion of calcareous sand increases, while internal friction angle decreases with increasing cement content; (4) cement-stabilized method can significantly improve the bearing capacity of calcareous sand foundation, especially for the saturated state. A cement content equal to or more than 15% and a thickness of 1/8 of the foundation can effectively improve the bearing capacity of the foundation; and (5) the ultimate bearing capacity of the foundation by numerical calculation is higher than that by experiments, while the settlement by calculating is lower.


Sign in / Sign up

Export Citation Format

Share Document