partial linear space
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

10.37236/5486 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Supalak Sumalroj ◽  
Chalermpong Worawannotai

We prove that a distance-regular graph with intersection array {22,16,5;1,2,20} does not exist. To prove this, we assume that such a graph exists and derive some combinatorial properties of its local graph. Then we construct a partial linear space from the local graph to display the contradiction.


10.37236/2831 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Stefaan De Winter ◽  
Jeroen Schillewaert ◽  
Jacques Verstraete

Let $\Pi = (P,L,I)$ denote a rank two geometry. In this paper, we are interested in the largest value of $|X||Y|$ where $X \subset P$ and $Y \subset L$ are sets such that $(X \times Y) \cap I = \emptyset$. Let $\alpha(\Pi)$ denote this value. We concentrate on the case where $P$ is the point set of $\mathsf{PG}(n,q)$ and $L$ is the set of $k$-spaces in $\mathsf{PG}(n,q)$. In the case that $\Pi$ is the projective plane $\mathsf{PG}(2,q)$, where $P$ is the set of points and $L$ is the set of lines of the projective plane, Haemers proved that maximal arcs in projective planes together with the set of lines not intersecting the maximal arc determine $\alpha(\mathsf{PG}(2,q))$ when $q$ is an even power of $2$. Therefore, in those cases,\[ \alpha(\Pi) = q(q - \sqrt{q} + 1)^2.\] We give both a short combinatorial proof and a linear algebraic proof of this result, and consider the analogous problem in generalized polygons. More generally, if $P$ is the point set of $\mathsf{PG}(n,q)$ and $L$ is the set of $k$-spaces in $\mathsf{PG}(n,q)$, where $1 \leq k \leq n - 1$, and $\Pi_q = (P,L,I)$, then we show as $q \rightarrow \infty$ that \[ \frac{1}{4}q^{(k + 2)(n - k)} \lesssim \alpha(\Pi) \lesssim q^{(k + 2)(n - k)}.\] The upper bounds are proved by combinatorial and spectral techniques. This leaves the open question as to the smallest possible value of $\alpha(\Pi)$ for each value of $k$. We prove that if for each $N \in \mathbb N$, $\Pi_N$ is a partial linear space with $N$ points and $N$ lines, then $\alpha(\Pi_N) \gtrsim \frac{1}{e}N^{3/2}$ as $N \rightarrow \infty$.


2011 ◽  
Vol 08 (01) ◽  
pp. 39-47 ◽  
Author(s):  
METOD SANIGA

The Veldkamp space, in the sense of Buekenhout and Cohen, of the generalized quadrangle GQ(4, 2) is shown not to be a (partial) linear space by simply giving several examples of Veldkamp lines (V-lines) having two or even three Veldkamp points (V-points) in common. Alongside the ordinary V-lines of size five, one also finds V-lines of cardinality three and two. There, however, exists a subspace of the Veldkamp space isomorphic to PG(3, 4) having 45 perps and 40 plane ovoids as its 85 V-points, with its 357 V-lines being of four distinct types. A V-line of the first type consists of five perps on a common line (altogether 27 of them), the second type features three perps and two ovoids sharing a tricentric triad (240 members), whilst the third and fourth type each comprises a perp and four ovoids in the rosette centered at the (common) center of the perp (90). It is also pointed out that 160 non-plane ovoids (tripods) fall into two distinct orbits — of sizes 40 and 120 — with respect to the stabilizer group of a copy of GQ(2, 2); a tripod of the first/second orbit sharing with the GQ(2, 2) a tricentric/unicentric triad, respectively.


Sign in / Sign up

Export Citation Format

Share Document