soil efflux
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1159
Author(s):  
Jun-Fu Zhao ◽  
Zhi-Yong Liao ◽  
Lian-Yan Yang ◽  
Jian-Kang Shi ◽  
Zheng-Hong Tan

Background: Although numerous studies have been carried out in recent decades, soil respiration remains one of the less understood elements in global carbon budget research. Tropical forests store a considerable amount of carbon, and a well-established knowledge of the patterns, components, and controls of soil respiration in these forests will be crucial in global change research. Methods: Soil respiration was separated into two components using the trenching method. Each component was measured at multiple temporal scales and in different microhabitats. A commercial soil efflux system (Li8100/8150) was used to accomplish soil respiration monitoring. Four commonly used models were compared that described the temperature dependence of soil heterotrophic respiration using nonlinear statistics. Results and Conclusions: Trenching has a limited effect on soil temperature but considerably affects soil water content due to the exclusion of water loss via tree transpiration. Soil respiration decreased gradually from 8 to 4 μmol·m−2·s−1 6 days after trenching. Soil autotrophic (Ra) and heterotrophic respiration (Rh) have contrasting diel patterns and different responses to temperature. Rh was negatively correlated with temperature but positively correlated with relative humidity. Both Ra and Rh varied dramatically among microhabitats. The Q10 value of Rh derived using the Q10 model was 2.54. The Kirschbaum–O’Connell model, which implied a strong decrease of Q10 with temperature, worked best in describing temperature dependence of Rh. Heterotrophic respiration accounted for nearly half of the total soil efflux. We found an unexpected diurnal pattern in soil heterotrophic respiration which might be related to diurnal moisture dynamics. Temperature, but not soil moisture, was the major controller of seasonal variation of soil respiration in both autotrophic and heterotrophic components. From a statistical perspective, the best model to describe the temperature sensitivity of soil respiration was the Kirschbaum–O’Connell model. Soil respiration varied strongly among the microhabitats and played a crucial role in stand-level ecosystem carbon balance assessment.


2017 ◽  
Vol 82 ◽  
pp. 23-31 ◽  
Author(s):  
Karine S. Peixoto ◽  
Ben Hur Marimon-Junior ◽  
Beatriz S. Marimon ◽  
Fernando Elias ◽  
Josenilton de Farias ◽  
...  

2015 ◽  
Vol 12 (16) ◽  
pp. 5143-5160 ◽  
Author(s):  
D. R. Bowling ◽  
J. E. Egan ◽  
S. J. Hall ◽  
D. A. Risk

Abstract. Recent studies have examined temporal fluctuations in the amount and carbon isotope content (δ13C) of CO2 produced by the respiration of roots and soil organisms. These changes have been correlated with diel cycles of environmental forcing (e.g., sunlight and soil temperature) and with synoptic-scale atmospheric motion (e.g., rain events and pressure-induced ventilation). We used an extensive suite of measurements to examine soil respiration over 2 months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux forest). Observations included automated measurements of CO2 and δ13C of CO2 in the soil efflux, the soil gas profile, and forest air. There was strong diel variability in soil efflux but no diel change in the δ13C of the soil efflux (δR) or the CO2 produced by biological activity in the soil (δJ). Following rain, soil efflux increased significantly, but δR and δJ did not change. Temporal variation in the δ13C of the soil efflux was unrelated to measured environmental variables, and we failed to find an explanation for this unexpected result. Measurements of the δ13C of the soil efflux with chambers agreed closely with independent observations of the isotopic composition of soil CO2 production derived from soil gas well measurements. Deeper in the soil profile and at the soil surface, results confirmed established theory regarding diffusive soil gas transport and isotopic fractionation. Deviation from best-fit diffusion model results at the shallower depths illuminated a pump-induced ventilation artifact that should be anticipated and avoided in future studies. There was no evidence of natural pressure-induced ventilation of the deep soil. However, higher variability in δ13C of the soil efflux relative to δ13C of production derived from soil profile measurements was likely caused by transient pressure-induced transport with small horizontal length scales.


2015 ◽  
Vol 12 (8) ◽  
pp. 6361-6404 ◽  
Author(s):  
D. R. Bowling ◽  
J. E. Egan ◽  
S. J. Hall ◽  
D. A. Risk

Abstract. Recent studies have examined temporal fluctuations in the amount and carbon isotope content (δ13C) of CO2 produced by respiration of roots and soil organisms. These changes have been correlated with diel cycles of environmental forcing (e.g., sunlight and soil temperature) and with synoptic-scale atmospheric motion (e.g., rain events and pressure-induced ventilation). We used an extensive suite of measurements to examine soil respiration over two months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux forest). Observations included automated measurements of CO2 and δ13C of CO2 in the soil efflux, the soil gas profile, and forest air. There was strong diel variability in soil efflux, but no diel change in the δ13C of the soil efflux (δR) or the CO2 produced by biological activity in the soil (δJ). Following rain, soil efflux increased significantly, but δR and δJ did not change. Temporal variation in the δ13C of the soil efflux was unrelated to measured environmental variables. Measurements of the δ13C of the soil efflux with chambers agreed closely with independent observations of the isotopic composition of soil CO2 production derived from soil gas well measurements. Deeper in the soil profile and at the soil surface, results confirmed established theory regarding diffusive soil gas transport and isotopic fractionation. Deviation from best-fit diffusion model results at the shallower depths illuminated a pump-induced ventilation artifact that should be anticipated and avoided in future studies. There was no evidence of natural pressure-induced ventilation of the deep soil. However, higher variability of δ13C of the soil efflux relative to δ13C of production derived from soil profile measurements was likely caused by transient pressure-induced transport with small horizontal length scales.


Sign in / Sign up

Export Citation Format

Share Document