isotope content
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 21)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Dun Wu ◽  
chao wei ◽  
yunfei li

Abstract China is a country short of water resources, and the leakage of urban water pipe network not only aggravates the current situation of water shortage, but also causes major accidents such as ground collapse, so it is of great significance to study the discrimination of urban underground pipe leakage. In this paper, the conventional ions and hydrogen and oxygen isotopes of water samples are determined by ion chromatograph and inductively coupled plasma mass spectrometer, and the characteristic factors are selected by cluster analysis and principal component analysis, and the mixed water discrimination model based on conventional ions is established According to the difference of hydrogen and oxygen isotope content between buried pipe water and groundwater, a discrimination model based on hydrogen and oxygen isotope is established, and the two models are combined to discriminate the leakage of buried pipe. The results show that, in terms of conventional ion content characteristics, the water in the pipe network is high in K++Na+ and Cl−, while the shallow groundwater near the pipe network is low in K++Na+ and Cl−, and the accuracy of the discriminant model based on conventional ions reaches 87.5%. In the aspect of hydrogen and oxygen isotope content characteristics, the water in the pipe network is closer to the precipitation line than the shallow groundwater, and establishing a discriminant model based on hydrogen and oxygen isotope can determine the leakage of buried pipes. This study provides a scientific basis for judging the leakage of urban underground pipes.


JETP Letters ◽  
2021 ◽  
Vol 114 (8) ◽  
pp. 463-469
Author(s):  
R. A. Babunts ◽  
A. N. Anisimov ◽  
I. D. Breev ◽  
A. S. Gurin ◽  
A. P. Bundakova ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Alexey A. Ekaykin ◽  
Alexey V. Bolshunov ◽  
Vladimir Ya. Lipenkov ◽  
Mirko Scheinert ◽  
Lutz Eberlein ◽  
...  

Abstract The region of Ridge B in central East Antarctica is one of the last unexplored parts of the continent and, at the same time, ranks among the most promising places to search for Earth's oldest ice. In January 2020, we carried out the first scientific traverse from Russia's Vostok Station to the topographical dome of Ridge B (Dome B, 3807 m above sea level, 79.02°S, 93.69°E). The glaciological programme included continuous snow-radar profiling and geodetic positioning along the traverse's route, installation of snow stakes, measurements of snow density, collection of samples for stable water isotope and chemical analyses and drilling of a 20 m firn core. The first results of the traverse show that the surface mass balance at Dome B (2.28 g cm−2 year−1) is among the lowest in Antarctica. The firn temperature below the layer of annual variations is −58.1 ± 0.2°C. A very low value of heavy water stable isotope content (-58.2‰ for oxygen-18) was discovered at a distance of 170 km from Vostok Station. This work is the first step towards a comprehensive reconnaissance study of the Ridge B area aimed at locating the best site for future deep drilling for the oldest Antarctic ice.


2021 ◽  
pp. 81-85
Author(s):  
D.V. Kutniy ◽  
D.D. Burdeinyi ◽  
N.N. Savchenko

The paper presents an overview of the research into the available non-destructive methods of determining the 234U isotope content in uranium-bearing materials. An alternative approach to a problem of detector calibration by the characteristic “intrinsic” efficiency is proposed. Certified reference uranium-bearing materials CRM 969 and CRM 146 (a range of 235U enrichments studied was 0.3…93%) were used as test samples, measurements were carried out with a wide-range energy detector based on the high-purity BeGe 3830 germanium (Canberra, USA) with 38 cm2 area and 3 cm thickness. An approach used for the “intrinsic” efficiency calibration for the 234U analysis permits to decrease the measurement error to 7.5% in the whole range of 235U enrichment (from 0.3 to 93%) and 234U concentrations (20 to 9800 µg/g). The proposed method does not demand standard samples for equipment calibration and does not depend on the physical (chemical) form of the investigated material and measurement geometry.


2021 ◽  
Author(s):  
Abigail G. Hughes ◽  
Sonja Wahl ◽  
Tyler R. Jones ◽  
Alexandra Zuhr ◽  
Maria Hörhold ◽  
...  

Abstract. Ice core water isotope records from Greenland and Antarctica are a valuable proxy for paleoclimate reconstruction, yet the processes influencing the climate signal stored in the isotopic composition of the snow are being revisited. Apart from precipitation input, post-depositional processes such as wind-driven redistribution and vapor-snow exchange processes at and below the surface are hypothesized to contribute to the isotope climate signal. Recent field studies have shown that surface snow isotopes vary between precipitation events and co-vary with vapor isotopes, which demonstrates that vapor- snow exchange is an important driving mechanism. Here we investigate how vapor-snow exchange and sublimation processes influence the isotopic composition of the snowpack. Controlled laboratory experiments under dry air flow show an increase of snow isotopic composition of up to 8 ‰ δ18O in the uppermost layer, with an attenuated signal down to 3 cm snow depth over the course of 4–6 days. This enrichment is accompanied by a decrease in the second-order parameter d-excess, indicating kinetic fractionation processes. Using a simple mass-balance and diffusion box model in conjunction with our observed laboratory vapor isotope signals, we are able to reproduce the observed changes in the snow. This confirms that sublimation alone can lead to a strong enrichment of stable water isotopes in surface snow and subsequent enrichment in the layers below. To compare laboratory experiments with realistic polar conditions, we completed four 2–3 day field experiments at the East Greenland Ice Core Project site (Northeast Greenland) in summer 2019. High-resolution temporal sampling of both natural and isolated snow was conducted under clear-sky conditions, and demonstrated that the snow isotopic composition changes on hourly timescales. A change of snow isotope content associated with sublimation is currently not implemented in isotope-enabled climate models and is not taken into account when interpreting ice core isotopic records. However, our results demonstrate that post-depositional processes such as sublimation play a role in creating the climate signal recorded in the water isotopes in surface snow. This suggests that the ice core water isotope signal may effectively integrate across multiple parameters, and the ice core climate record should be interpreted as such.


2020 ◽  
Vol 83 (11) ◽  
pp. 1533-1537
Author(s):  
S. A. Krat ◽  
A. P. Kharina ◽  
I. A. Sorokin ◽  
V. A. Kostyushin ◽  
E. D. Vovchenko ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1983 ◽  
Author(s):  
Željka Brkić ◽  
Mladen Kuhta ◽  
Tamara Hunjak ◽  
Ozren Larva

Tracer methods are useful for investigating groundwater travel times and recharge rates and analysing impacts on groundwater quality. The most frequently used tracers are stable isotopes and tritium. Stable isotopes of oxygen (δ18O) and hydrogen (δ2H) are mainly used as indicators of the recharge condition. Tritium (3H) is used to estimate an approximate mean groundwater age. This paper presents the results of an analysis of stable isotope data and tritium activity in Croatian groundwater samples that were collected between 1997 and 2014 at approximately 100 sites. The composition of the stable isotopes of groundwater in Croatia originates from recent precipitation and is described using two regional groundwater lines. One of them is applied to groundwater accumulated in the aquifers in the Pannonian part of Croatia and the other is for groundwater accumulated in the Dinaric karst of Croatia. The isotope content shows that the studied groundwater is mainly modern water. A mix of sub-modern and modern water is mostly accumulated in semi-confined porous aquifers in northern Croatia, deep carbonate aquifers, and (sub)thermal springs.


2020 ◽  
Vol 7 ◽  
pp. 121-136
Author(s):  
Margariete Malenda ◽  
Thomas Betts ◽  
Wendy Simpson ◽  
Michael Wizevich ◽  
Edward Simpson ◽  
...  

The Glen Canyon Dam, along the Colorado River in Page, Arizona, was completed in 1963, creating the Lake Powell reservoir which spans the Arizona-Utah border. The water levels of Lake Powell peaked in 1983 and have declined since, releasing overlying pressure on the underlying sediment. In general, water levels experience seasonal highs and lows, with punctuated periods of considerable and steady decreases (1987 to 1993, 1999 to 2005, and 2011 to 2014) and less dramatic recoveries (1993 to 1999 and 2005 to 2011). This release of overpressure coupled with increasing pore pressures due to biological methane production has created mud volcanoes, structures along the shoreline made of cavities that allow fluid and gas to rise to the surface and escape. Although these sedimentary structures have been assessed using geophysical techniques and excavation to characterize their morphologies and fracture propagation, limited chemical data has been reported on the inputs and products of these gas- and fluid-escape features. This research investigates the relative proportions of methane (CH4), carbon dioxide (CO2), and air (unseparated nitrogen [N2] and oxygen [O2]) gas released, the variability of these proportions through time, and how these gases formed in the subsurface. The field site is along the Lake Powell near Hite, Utah. Three gas samples were collected from mud volcanoes along the delta in July 2014, whereas 21 samples were collected in July 2015 and were analyzed via gas chromatography (GC). The GC analyses from 2014 and 2015 have a mean CH4 concentration of 81.47 ± 9.29 percent of volume (% v/v) and 32.40 ± 15.31% v/v, respectively. In May 2016, 50 samples from 25 vents were collected and analyzed via GC for bulk composition, and 11 of which were analyzed by isotope ratio mass spectrometry (IRMS) for carbon and hydrogen isotope content of CH4. The 2016 GC analysis detected average relative concentrations for CH4, CO2, and air of 74.51 ± 14.08% v/v, 2.82 ± 3.76% v/v, and 22.67 ± 14.28% v/v, respectively. Gas compositions from individual vents varied over the three-day sampling timeframe in the summer of 2016 including CH4 decreases of up to 66% v/v and increases of up to 38% v/v. IRMS signatures of samples collected in 2016 indicate the gasses are in part generated during microbial respiration through hydrogenotrophic and acetoclastic methane production.


Sign in / Sign up

Export Citation Format

Share Document