multiple network
Recently Published Documents


TOTAL DOCUMENTS

299
(FIVE YEARS 111)

H-INDEX

21
(FIVE YEARS 5)

Author(s):  
Vanya Ivanova

In this paper a new neural model for detection of multiple network IoT-based attacks, such as DDoS TCP, UDP, and HHTP flood, is presented. It consists of feedforward multilayer network with back propagation. A general algorithm for its optimization during training is proposed, leading to proper number of neurons in the hidden layers. The Scaled Gradient Descent algorithm and the Adam optimization are studied with better classification results, obtained by the developed classifiers, using the latter. Tangent hyperbolic function appears to be proper selection for the hidden neurons. Two sets of features, gathered from aggregated records of the network traffic, are tested, containing 8 and 10 components. While more accurate results are obtained for the 10-feature set, the 8-feature set offers twice lower training time and seems applicable for real-world applications. The detection rate for 7 of 10 different network attacks, primarily various types of floods, is higher than 90% and for 3 of them – mainly reconnaissance and keylogging activities with low intensity of the generated traffic, deviates between 57% and 68%. The classifier is considered applicable for industrial implementation.


2021 ◽  
Author(s):  
Danyang Zheng ◽  
Gangxiang Shen ◽  
Xiaojun Cao ◽  
Biswanath Mukherjee

<div>Emerging 5G technologies can significantly reduce end-to-end service latency for applications requiring strict quality of service (QoS). With network function virtualization (NFV), to complete a client’s request from those applications, the client’s data can sequentially go through multiple service functions (SFs) for processing/analysis but introduce additional processing delay. To reduce the processing delay from the serially-running SFs, network function parallelism (NFP) that allows multiple SFs to run in parallel is introduced. In this work, we study how to apply NFP into the SF chaining and embedding process such that the latency, including processing and propagation delays, can be jointly minimized. We introduce a novel augmented graph to address the parallel relationship constraint among the required SFs. Considering parallel relationship constraints, we propose a novel problem called parallelism-aware service function chaining and embedding (PSFCE). For this problem, we propose a near-optimal maximum parallel block gain (MPBG) first optimization algorithm when computing resources at each physical node are enough to host the required SFs. When computing resources are limited, we propose a logarithm-approximate algorithm, called parallelism-aware SFs deployment (PSFD), to jointly optimize processing and propagation delays. We conduct extensive simulations on multiple network scenarios to evaluate the performances of our schemes. Accordingly, we find that (i) MPBG is near-optimal, (ii) the optimization of end-to-end service latency largely depends on the processing delay in small networks and is impacted more by the propagation delay in large networks, and (iii) PSFD outperforms the schemes directly extended from existing works regarding end-to-end latency.</div>


2021 ◽  
Author(s):  
Danyang Zheng ◽  
Gangxiang Shen ◽  
Xiaojun Cao ◽  
Biswanath Mukherjee

<div>Emerging 5G technologies can significantly reduce end-to-end service latency for applications requiring strict quality of service (QoS). With network function virtualization (NFV), to complete a client’s request from those applications, the client’s data can sequentially go through multiple service functions (SFs) for processing/analysis but introduce additional processing delay. To reduce the processing delay from the serially-running SFs, network function parallelism (NFP) that allows multiple SFs to run in parallel is introduced. In this work, we study how to apply NFP into the SF chaining and embedding process such that the latency, including processing and propagation delays, can be jointly minimized. We introduce a novel augmented graph to address the parallel relationship constraint among the required SFs. Considering parallel relationship constraints, we propose a novel problem called parallelism-aware service function chaining and embedding (PSFCE). For this problem, we propose a near-optimal maximum parallel block gain (MPBG) first optimization algorithm when computing resources at each physical node are enough to host the required SFs. When computing resources are limited, we propose a logarithm-approximate algorithm, called parallelism-aware SFs deployment (PSFD), to jointly optimize processing and propagation delays. We conduct extensive simulations on multiple network scenarios to evaluate the performances of our schemes. Accordingly, we find that (i) MPBG is near-optimal, (ii) the optimization of end-to-end service latency largely depends on the processing delay in small networks and is impacted more by the propagation delay in large networks, and (iii) PSFD outperforms the schemes directly extended from existing works regarding end-to-end latency.</div>


2021 ◽  
pp. 108651
Author(s):  
Rui Tang ◽  
Xingshu Chen ◽  
Chuancheng Wei ◽  
Qindong Li ◽  
Wenxian Wang ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7450
Author(s):  
Jesús Burgueño ◽  
Isabel de-la-Bandera ◽  
Raquel Barco

The location of user equipments (UEs) allows application developers to customize the services for users to perceive an enhanced experience. In addition, this UE location enables network operators to develop location-aware solutions to optimize network resource management. Moreover, the combination of location-aware approaches and new network features introduced by 5G enables to further improve the network performance. In this sense, dual connectivity (DC) allows users to simultaneously communicate with two nodes. The basic strategy proposed by 3GPP to select these nodes is based only on the power received by the users. However, the network performance could be enhanced if an alternative methodology is proposed to make this decision. This paper proposes, instead of power-based selection, to choose the nodes that provide the highest quality of experience (QoE) to the user. With this purpose, the proposed system uses the UE location as well as multiple network metrics as inputs. A dense urban scenario is assumed to test the solution in a system-level simulation tool. The results show that the optimal selection varies depending on the UE location, as well as the increase in the QoE perceived by users of different services.


2021 ◽  
Vol 7 (11) ◽  
pp. 220
Author(s):  
Filip Bajić ◽  
Josip Job

In recovering information from the chart image, the first step should be chart type classification. Throughout history, many approaches have been used, and some of them achieve results better than others. The latest articles are using a Support Vector Machine (SVM) in combination with a Convolutional Neural Network (CNN), which achieve almost perfect results with the datasets of few thousand images per class. The datasets containing chart images are primarily synthetic and lack real-world examples. To overcome the problem of small datasets, to our knowledge, this is the first report of using Siamese CNN architecture for chart type classification. Multiple network architectures are tested, and the results of different dataset sizes are compared. The network verification is conducted using Few-shot learning (FSL). Many of described advantages of Siamese CNNs are shown in examples. In the end, we show that the Siamese CNN can work with one image per class, and a 100% average classification accuracy is achieved with 50 images per class, where the CNN achieves only average classification accuracy of 43% for the same dataset.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chengqi Shi ◽  
Fan Zhang ◽  
Peiyao Zhu ◽  
Qinlu Shi

Inter-organizational power relations have long been considered to be balanced in innovation networks, which are viewed as loosely coupled systems. Some recent studies, however, show that innovation networks are asymmetric and hierarchical, and the power of network actors has become a significant but rarely addressed issue. As knowledge is the most important resource in the network, this paper introduces the concept of knowledge power by combining related research perspectives and conducting some fundamental research on it as follows: (1) knowledge power’s origins are analyzed by proposing the term “activated knowledge” and studying the path through which it is formed over multiple levels of the network; (2) a multilevel framework of characteristics of activated knowledge, which is considered the major determinant of knowledge power, is established, and suggestions are offered for how they impact knowledge power; and (3) a multilevel measurement model for knowledge power is built, and the above propositions are tested by mathematical inference. The purpose of this paper is not only to study knowledge power’s formation, determinants, and measurement but also to offer a comprehensive view, combining multiple network levels and multiple research perspectives, that should be useful to researchers conducting future studies in this field.


2021 ◽  
Author(s):  
Wali Ullah Khan ◽  
Tu N. Nguyen ◽  
Furqan Jameel ◽  
Muhammad Ali Jamshed ◽  
Haris bin Pervaiz ◽  
...  

This work sheds light on a novel learning-based optimization framework for heterogeneous backscatter vehicular networks. More specifically, the article presents a resource allocation and user association scheme for large-scale heterogeneous backscatter vehicular networks by considering a collaboration centric spectrum sharing mechanism. In the considered network setup, multiple network service providers (NSPs) own the resources to serve several legacy and backscatter vehicular users in the network. For each NSP, the legacy vehicle user operates under the macro cell, whereas, the backscatter vehicle user operates under small private cells using leased spectrum resources. A joint power allocation, user association, and spectrum sharing problem has been formulated with an objective to maximize the utility of NSPs. In order to overcome challenges of high dimensionality and non-convexity, the problem is divided into two subproblems. Subsequently, a reinforcement learning and a supervised deep learning approach have been used to solve both subproblems in an efficient and effective manner.


2021 ◽  
Author(s):  
Wali Ullah Khan ◽  
Tu N. Nguyen ◽  
Furqan Jameel ◽  
Muhammad Ali Jamshed ◽  
Haris bin Pervaiz ◽  
...  

This work sheds light on a novel learning-based optimization framework for heterogeneous backscatter vehicular networks. More specifically, the article presents a resource allocation and user association scheme for large-scale heterogeneous backscatter vehicular networks by considering a collaboration centric spectrum sharing mechanism. In the considered network setup, multiple network service providers (NSPs) own the resources to serve several legacy and backscatter vehicular users in the network. For each NSP, the legacy vehicle user operates under the macro cell, whereas, the backscatter vehicle user operates under small private cells using leased spectrum resources. A joint power allocation, user association, and spectrum sharing problem has been formulated with an objective to maximize the utility of NSPs. In order to overcome challenges of high dimensionality and non-convexity, the problem is divided into two subproblems. Subsequently, a reinforcement learning and a supervised deep learning approach have been used to solve both subproblems in an efficient and effective manner.


Sign in / Sign up

Export Citation Format

Share Document