pachytene nucleus
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Nematology ◽  
2010 ◽  
Vol 12 (5) ◽  
pp. 759-766
Author(s):  
Paul Goldstein

AbstractThe duplication mutants sDp1 and mnDp1 in Caenorhabditis elegans differ in their size and recombination/pairing strategies within the pachytene nucleus. mnDp1 is a duplication of approximately 18% of the X chromosome with the duplicated segment transposed and inserted into linkage group V. sDp1 is a free duplication which covers 30 map units of linkage group I and crossing-over has been determined genetically with its homologue. Analysis of the synaptonemal complexes (SC) and pachytene karyotypes of both duplication mutants reveal that there is an extension of one of the SCs in mnDp1 while the sDp1 free duplication partially pairs with its homologue along a small portion of its length. The remaining region exists as a univalent in the pachytene nucleus. This indicates that there is at least one SC initiation site on the sDp1 free duplication. Only bivalent pairing is permitted and there are no trivalents. To some extent, the autosomes preferentially pair at the exclusion of the sDp1 duplication. Switching of pairing partners was evident between the duplication and the homologue, probably because of the size of the duplication. Thus, the mechanism of chromosome segregation in the two duplications is different. The number of Disjunction Regulator Regions, which are associated with X-chromosome nondisjunction, was three in both mutants compared to six in wild-type. The number of males produced in mnDp1 was 1.0%, in sDp1 it was 2.0%, while in wild-type it is 0.3%. Recombination nodules were not observed in any nuclei. The ultimate goal of these studies is to correlate the physical and genetic maps and in this study linkage group I has been identified in the pachytene nucleus.


1989 ◽  
Vol 261 (3) ◽  
pp. 775-786 ◽  
Author(s):  
K Satyanarayana ◽  
M R S Rao

Poly(ADP-ribosyl)ation of nuclear proteins was several-fold higher in the pachytene spermatocytes than in the premeiotic germ cells of the rat. Among the histones of the pachytene nucleus, histone subtypes H2A, H1 and H3 were poly(ADP-ribosyl)ated. Based on the immunoaffinity fractionation procedure of Malik, Miwa, Sugimara & Smulson [(1983) Proc. Natl. Acad. Sci. U.S.A. 80, 2554-2558] we have fractionated DNAase-II-solubilized chromatin into poly(ADP-ribosyl)ated chromatin (PAC) and non-poly(ADP-ribosyl)ated chromatin (non-PAC) domains on an anti-[poly(ADP-ribose)] IgG affinity matrix. Approx. 2.5% of the pachytene chromatin represented the PAC domains. A significant amount of [alpha-32P]dATP-labelled pachytene chromatin (labelled in vitro) was bound to the affinity matrix. The DNA of pachytene PAC domains had internal strand breaks, significant length of gaps and ligatable ends, namely 5′-phosphoryl and 3′-hydroxyl termini. On the other hand, the PAC domains from 18 h regenerating liver had very few gaps, if any. The presence of gaps in the pachytene PAC DNA was also evident from thermal denaturation studies. Although many of the polypeptides were common to the PAC domains of both pachytene and regenerating liver, the DNA sequences associated with these domains were quite different. A 20 kDa protein and the testis-specific histone H1t were selectively enriched in the pachytene PAC domains. The pachytene PAC domains also contained approx. 10% of the messenger coding sequences present in the DNAase-II-solubilized chromatin. The pachytene PAC domains, therefore, may represent highly enriched DNA-repair domains of the pachytene nucleus.


Genome ◽  
1989 ◽  
Vol 32 (1) ◽  
pp. 72-81 ◽  
Author(s):  
J. H. de Jong ◽  
J. van Eden ◽  
J. Sybenga

Four rye plants heterozygous for translocation 248, involving chromosomes 1R and 6R, were used for a comparative study of synaptonemal complex formation at midprophase I and chromosome configurations at metaphase I. Synaptonemal complexes were obtained with a cell-spreading technique and studied with electron microscopy. The total length of the synaptonemal complexes in the 28 analyzable pachytene nuclei varied considerably, both within and among plants. The variation of synaptonemal complex lengths of the bivalents in a nucleus was partly stage dependent; i.e., it was greater at early than at late pachytene. In all but one pachytene nucleus, pairing in the quadrivalent was regular, and the four pairing arms were usually easy to identify. Most noticeable was the variation of pairing saturation at the breakpoint of the quadrivalent. Pairing in the breakpoint region was delayed with respect to the pairing in the bivalents. Variation in the arm lengths of the quadrivalent was the result of incomplete and nonhomologous pairing at the breakpoint as well as differential contraction rates among chromosome segments. It was shown that the completion of delayed pairing throughout pachytene is mainly long-arm pairing. The actual breakpoint was therefore not in the middle of the unpaired segments, but more distal. The analysis of metaphase I nuclei revealed that chiasma frequency in this material was higher than in similar material used in former studies. When one of the translocation segments lacked a chiasma, this was in most cases the short translocated segment 1RS, the terminal segment of the satellite of chromosome 1R. Positive chiasma interference was demonstrated between the interstitial and exchanged segment in 1RS. This agreed with the observation of a negative correlation in extent of pairing between these two segments. Other interference phenomena, which have been described for this translocation in other material, remained undetected because of lack of variation in chiasma formation owing to high chiasma frequency.Key words: Secale cereale, meiosis, translocation, synaptonemal complex, metaphase I.


Genome ◽  
1987 ◽  
Vol 29 (2) ◽  
pp. 309-318 ◽  
Author(s):  
C. B. Gillies ◽  
J. Kuspira ◽  
R. N. Bhambhani

Electron microscopy of synaptonemal complex spreads from autotetraploid Triticum monococcum (2n = 4x = 28) revealed a minimum mean of 3.59 multivalents per zygotene–pachytene nucleus. The range of values was from 1 to 6 multivalents per nucleus. Most of the multivalents were quadrivalents with single, medially located pairing partner switch points. Lateral element pairing switches, particularly the few multiple switches, were often accompanied by extensive asynapsis around the switch point. The synaptonemal complex multivalent frequency is considerably higher than the metaphase I quadrivalent frequency previously reported for the same material. Calculations of expected pachytene quadrivalent frequency from metaphase I data, using several published theoretical models, gave values that did not agree with the results obtained here. The difference between the multivalent frequencies at pachytene and metaphase I does not appear to be the result of a correction process. Instead, it could be caused by a combination of preferential pairing or crossing-over and the effects of the position of partner switches and asynapsis associated with switches. Key words: autotetraploid, multivalents, synaptonemal complex, pairing effects.


Sign in / Sign up

Export Citation Format

Share Document