nonanticipativity constraints
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

2020 ◽  
Vol 11 (6) ◽  
pp. 4847-4859
Author(s):  
Gang Zhang ◽  
Feng Zhang ◽  
Xin Zhang ◽  
Zhaoyu Wang ◽  
Ke Meng ◽  
...  

2020 ◽  
Vol 32 (3) ◽  
pp. 805-821
Author(s):  
Kevin Ryan ◽  
Shabbir Ahmed ◽  
Santanu S. Dey ◽  
Deepak Rajan ◽  
Amelia Musselman ◽  
...  

Scenario decomposition algorithms for stochastic programs compute bounds by dualizing all nonanticipativity constraints and solving individual scenario problems independently. We develop an approach that improves on these bounds by reinforcing a carefully chosen subset of nonanticipativity constraints, effectively placing scenarios into groups. Specifically, we formulate an optimization problem for grouping scenarios that aims to improve the bound by optimizing a proxy metric based on information obtained from evaluating a subset of candidate feasible solutions. We show that the proposed grouping problem is NP-hard in general, identify a polynomially solvable case, and present two formulations for solving the problem: a matching formulation for a special case and a mixed-integer programming formulation for the general case. We use the proposed grouping scheme as a preprocessing step for a particular scenario decomposition algorithm and demonstrate its effectiveness in solving standard test instances of two-stage 0–1 stochastic programs. Using this approach, we are able to prove optimality for all previously unsolved instances of a standard test set. Additionally, we implement this scheme as a preprocessing step for PySP, a publicly available and widely used implementation of progressive hedging, and compare this grouping approach with standard grouping approaches on large-scale stochastic unit commitment instances. Finally, the idea is extended to propose a finitely convergent algorithm for two-stage stochastic programs with a finite feasible region.


2016 ◽  
Vol 46 (2) ◽  
pp. 234-248 ◽  
Author(s):  
Erin J. Belval ◽  
Yu Wei ◽  
Michael Bevers

Wildfire behavior is a complex and stochastic phenomenon that can present unique tactical management challenges. This paper investigates a multistage stochastic mixed integer program with full recourse to model spatially explicit fire behavior and to select suppression locations for a wildland fire. Simplified suppression decisions take the form of “suppression nodes”, which are placed on a raster landscape for multiple decision stages. Weather scenarios are used to represent a distribution of probable changes in fire behavior in response to random weather changes, modeled using probabilistic weather trees. Multistage suppression decisions and fire behavior respond to these weather events and to each other. Nonanticipativity constraints ensure that suppression decisions account for uncertainty in weather forecasts. Test cases for this model provide examples of fire behavior interacting with suppression to achieve a minimum expected area impacted by fire and suppression.


Sign in / Sign up

Export Citation Format

Share Document