elemental abundance
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 52)

H-INDEX

32
(FIVE YEARS 6)

2022 ◽  
Vol 924 (1) ◽  
pp. 29
Author(s):  
Hirokazu Sasaki ◽  
Yuta Yamazaki ◽  
Toshitaka Kajino ◽  
Motohiko Kusakabe ◽  
Takehito Hayakawa ◽  
...  

Abstract We calculate the Galactic Chemical Evolution of Mo and Ru by taking into account the contribution from ν p-process nucleosynthesis. We estimate yields of p-nuclei such as 92,94Mo and 96,98Ru through the ν p-process in various supernova progenitors based upon recent models. In particular, the ν p-process in energetic hypernovae produces a large amount of p-nuclei compared to the yield in ordinary core-collapse SNe. Because of this, the abundances of 92,94Mo and 96,98Ru in the Galaxy are significantly enhanced at [Fe/H] = 0 by the ν p-process. We find that the ν p-process in hypernovae is the main contributor to the elemental abundance of 92Mo at low metallicity [Fe/H] < −2. Our theoretical prediction of the elemental abundances in metal-poor stars becomes more consistent with observational data when the ν p-process in hypernovae is taken into account.


2021 ◽  
Vol 257 (2) ◽  
pp. 63
Author(s):  
Wenbo Zuo ◽  
Aigen Li ◽  
Gang Zhao

Abstract While it is well recognized that both the Galactic interstellar extinction curves and the gas-phase abundances of dust-forming elements exhibit considerable variations from one sight line to another, as yet most of the dust extinction modeling efforts have been directed to the Galactic average extinction curve, which is obtained by averaging over many clouds of different gas and dust properties. Therefore, any details concerning the relationship between the dust properties and the interstellar environments are lost. Here we utilize the wealth of extinction and elemental abundance data obtained by space telescopes and explore the dust properties of a large number of individual sight lines. We model the observed extinction curve of each sight line and derive the abundances of the major dust-forming elements (i.e., C, O, Si, Mg, and Fe) required to be tied up in dust (i.e., dust depletion). We then confront the derived dust depletions with the observed gas-phase abundances of these elements and investigate the environmental effects on the dust properties and elemental depletions. It is found that for the majority of the sight lines the interstellar oxygen atoms are fully accommodated by gas and dust and therefore there does not appear to be a “missing oxygen” problem. For those sight lines with an extinction-to-hydrogen column density A V /N H ≳ 4.8 × 10−22 mag cm2 H−1 there are shortages of C, Si, Mg, and Fe elements for making dust to account for the observed extinction, even if the interstellar C/H, Si/H, Mg/H, and Fe/H abundances are assumed to be protosolar abundances augmented by Galactic chemical evolution.


2021 ◽  
Vol 923 (1) ◽  
pp. 65
Author(s):  
A. Feldmeier-Krause ◽  
I. Lonoce ◽  
W. L. Freedman

Abstract The evolution of galaxies is imprinted on their stellar populations. Several stellar population properties in massive early-type galaxies have been shown to correlate with intrinsic galaxy properties such as the galaxy’s central velocity dispersion, suggesting that stars formed in an initial collapse of gas (z ∼ 2). However, stellar populations change as a function of galaxy radius, and it is not clear how local gradients of individual galaxies are influenced by global galaxy properties and galaxy environment. In this paper, we study the stellar populations of eight early-type galaxies as a function of radius. We use optical spectroscopy (∼4000–8600 Å) and full spectral fitting to measure stellar population age, metallicity, slope of the initial mass function (IMF), and nine elemental abundances (O, Mg, Si, Ca, Ti, C, N, Na, and Fe) out to 1 R e for each galaxy individually. We find a wide range of properties, with ages ranging from 3–13 Gyr. Some galaxies have a radially constant, Salpeter-like IMF, and other galaxies have a super-Salpeter IMF in the center, decreasing to a sub-Salpeter IMF at ∼0.5 R e . We find a global correlation of the central [Z/H] with the central IMF and the radial gradient of the IMF for the eight galaxies, but local correlations of the IMF slope with other stellar population parameters hold only for subsets of the galaxies in our sample. Some elemental abundances also correlate locally with each other within a galaxy, suggesting a common production channel. These local correlations appear only in subsets of our galaxies, indicating variations of the stellar content among different galaxies.


2021 ◽  
Vol 508 (2) ◽  
pp. 1831-1841
Author(s):  
David H Brooks ◽  
Stephanie L Yardley

ABSTRACT Accurate forecasting of space weather requires knowledge of the source regions where solar energetic particles (SEP) and eruptive events originate. Recent work has linked several major SEP events in 2014, January, to specific features in the host active region (AR 11944). In particular, plasma composition measurements in and around the footpoints of hot, coronal loops in the core of the active region were able to explain the values later measured in situ by the Wind spacecraft. Due to important differences in elemental composition between SEPs and the solar wind, the magnitude of the Si/S elemental abundance ratio emerged as a key diagnostic of SEP seed population and solar wind source locations. We seek to understand if the results are typical of other active regions, even if they are not solar wind sources or SEP productive. In this paper, we use a novel composition analysis technique, together with an evolutionary magnetic field model, in a new approach to investigate a typical solar active region (AR 11150), and identify the locations of highly fractionated (high Si/S abundance ratio) plasma. Material confined near the footpoints of coronal loops, as in AR 11944, that in this case have expanded to the AR periphery, show the signature, and can be released from magnetic field opened by reconnection at the AR boundary. Since the fundamental characteristics of closed field loops being opened at the AR boundary is typical of active regions, this process is likely to be general.


2021 ◽  
Vol 508 (1) ◽  
pp. 508-515
Author(s):  
Dhruv A Muley ◽  
Coral R Wheeler ◽  
Philip F Hopkins ◽  
Andrew Wetzel ◽  
Andrew Emerick ◽  
...  

ABSTRACT We explore the effect of including progenitor mass- and metallicity-dependent yields, supernova rates and energetics on variations in elemental abundance ratios (particularly [α/Fe]) in dwarf galaxies. To understand how the scatter and overall trends in [α/Fe] are affected by including variable metal yields from a discretely sampled initial mass function, we run FIRE simulations of a dwarf galaxy (M⋆(z = 0$) \sim 10^6\rm \, M_{\odot })$ using nucleosynthetic yields from the NuGrid data base that depend on the stellar progenitor mass and metallicity. While NuGrid exhibits lower aggregate α-element production than default FIRE yields, we find that its explicit mass dependence, even when including turbulent metal diffusion, substantially widens the intrinsic scatter in the simulated [Fe/H]-[α/Fe] – a phenomenon visible in some observations of dwarf galaxies.


2021 ◽  
Author(s):  
Michelle Lavagna ◽  
John Brucato ◽  
Jacopo Prinetto ◽  
Andrea Capannolo ◽  
Michele Bechini ◽  
...  

&lt;p&gt;Deimos and Phobos are considered primary targets of investigation to understand the origin and evolution of Mars and more in general the terrestrial planets of the Solar System.&amp;#160;&lt;/p&gt; &lt;p&gt;TASTE mission aims complementing MMX investigation by focusing on Deimos surface, combining both &lt;strong&gt;global remote sensing&lt;/strong&gt; observations from a close orbit and&lt;strong&gt; direct in-situ analyses&lt;/strong&gt; of the surface thanks to a lander release on Deimos. With a synergy between orbital and in-situ investigations, the proposed mission will contribute to the Deimos global morphology understanding; its global elemental abundance; landing site morphology and texture; landing site organic content and surface composition. TASTE is conceived as a Cubesat-in-Cubesat mission: a 12U space asset composed by a &lt;strong&gt;9U orbiter &lt;/strong&gt;and a&lt;strong&gt; 3U lander&lt;/strong&gt;. The former embarks an &lt;strong&gt;X-gamma ray spectrometer&lt;/strong&gt; developed by OAT and a multispectral camera, the second is equipped with a&amp;#160; &lt;strong&gt;miniaturized Surface Sample Analyser&lt;/strong&gt; (SSA), composed by a new Sample Acquisition Mechanism (SAM), conceived by PoliMi and a Surface Analytical Laboratory (SAL)&amp;#160; developed by INAF OAA.&amp;#160;&lt;br /&gt;The mission is conceived to keep the orbiter on a QSO nearby Deimos to facilitate the lander release and the scientific operations in synergy with the lander itself. Details on science, space assets sizing and design and mission science operations will be discussed in deep.&amp;#160;&lt;/p&gt;


Inorganics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 36
Author(s):  
Chengshang Zhou ◽  
Jingxi Zhang ◽  
Robert C. Bowman ◽  
Zhigang Zak Fang

Magnesium-based hydrides are considered as promising candidates for solid-state hydrogen storage and thermal energy storage, due to their high hydrogen capacity, reversibility, and elemental abundance of Mg. To improve the sluggish kinetics of MgH2, catalytic doping using Ti-based catalysts is regarded as an effective approach to enhance Mg-based materials. In the past decades, Ti-based additives, as one of the important groups of catalysts, have received intensive endeavors towards the understanding of the fundamental principle of catalysis for the Mg-H2 reaction. In this review, we start with the introduction of fundamental features of magnesium hydride and then summarize the recent advances of Ti-based additive doped MgH2 materials. The roles of Ti-based catalysts in various categories of elemental metals, hydrides, oxides, halides, and intermetallic compounds were overviewed. Particularly, the kinetic mechanisms are discussed in detail. Moreover, the remaining challenges and future perspectives of Mg-based hydrides are discussed.


2021 ◽  
Vol 504 (2) ◽  
pp. 2190-2223
Author(s):  
Elham Eftekhari ◽  
Alexandre Vazdekis ◽  
Francesco La Barbera

ABSTRACT Stellar population studies provide unique clues to constrain galaxy formation models. So far, detailed studies based on absorption line strengths have mainly focused on the optical spectral range although many diagnostic features are present in other spectral windows. In particular, the near-infrared (NIR) can provide a wealth of information about stars, such as evolved giants, that have less evident optical signatures. Due to significant advances in NIR instrumentation and extension of spectral libraries and stellar population synthesis (SPS) models to this domain, it is now possible to perform in-depth studies of spectral features in the NIR to a high level of precision. In this work, taking advantage of state-of-the-art SPS models covering the NIR spectral range, we introduce a new set of NIR indices constructed to be maximally sensitive to the main stellar population parameters, namely age, metallicity, and initial mass function (IMF). We fully characterize the new indices against these parameters as well as their sensitivity to individual elemental abundance variations, velocity dispersion broadening, wavelength shifts, signal-to-noise ratio, and flux calibration. We also present, for the first time, a method to ensure that the analysis of spectral indices is not affected by sky contamination, which is a major challenge when dealing with NIR spectroscopy. Moreover, we discuss two main applications: (i) the ability of some NIR spectral indices to constrain the shape of the low-mass IMF and (ii) current issues in the analysis of NIR spectral indices for future developments of SPS modelling.


2021 ◽  
Vol 645 ◽  
pp. A35
Author(s):  
C. Boeche ◽  
A. Vallenari ◽  
S. Lucatello

Context. Ongoing and future massive spectroscopic surveys will collect very large numbers (106–107) of stellar spectra that need to be analyzed. Highly automated software is needed to derive stellar parameters and chemical abundances from these spectra. Aims. We present the new version of SP_Ace (Stellar Parameters And Chemical abundances Estimator) a code that derives stellar parameters and elemental abundance from stellar spectra. The new version covers a larger spectral resolution interval (R = 2000−40 000) and its new library covers bluer wavelengths (4800–6860 Å). Methods. SP_Ace relies on the General-Curve-Of-Growth (GCOG) library based on 6700 absorption lines whose oscillator strengths were calibrated astrophysically. We developed the calibration method and applied it to all the lines. From the new line list obtained we build the GCOG library, adopting an improved method to correct for the opacity of the neighboring lines. We implemented a new line profile for the code SP_Ace that better reproduces that of synthetic spectra. This new version of SP_Ace and the GCOG library has been tested on synthetic and real spectra to establish the accuracy and precision of the derived stellar parameters. Results. SP_Ace can derive the stellar parameters Teff, log g, [M/H], and chemical abundances with satisfactory results; the accuracy depends on the spectral features that determine the quality, such as spectral resolution, signal-to-noise ratio, and wavelength coverage. Systematic errors were identified and quantified where possible. The source code is publicly available.


Sign in / Sign up

Export Citation Format

Share Document