hilbert manifold
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)



2020 ◽  
Vol 20 (06) ◽  
pp. 2040012
Author(s):  
Zdzisław Brzeźniak ◽  
Javed Hussain

The objective of this paper is to prove the existence of a global solution to a certain stochastic partial differential equation subject to the [Formula: see text]-norm being constrained. The corresponding evolution equation can be seen as the projection of the unconstrained problem onto the tangent space of the unit sphere [Formula: see text] in a Hilbert space [Formula: see text].





2016 ◽  
Vol 19 (01) ◽  
pp. 1650025 ◽  
Author(s):  
David Radnell ◽  
Eric Schippers ◽  
Wolfgang Staubach

Consider a Riemann surface of genus [Formula: see text] bordered by [Formula: see text] curves homeomorphic to the unit circle, and assume that [Formula: see text]. For such bordered Riemann surfaces, the authors have previously defined a Teichmüller space which is a Hilbert manifold and which is holomorphically included in the standard Teichmüller space. We show that any tangent vector can be represented as the derivative of a holomorphic curve whose representative Beltrami differentials are simultaneously in [Formula: see text] and [Formula: see text], and furthermore that the space of [Formula: see text] differentials in [Formula: see text] decomposes as a direct sum of infinitesimally trivial differentials and [Formula: see text] harmonic [Formula: see text] differentials. Thus the tangent space of this Teichmüller space is given by [Formula: see text] harmonic Beltrami differentials. We conclude that this Teichmüller space has a finite Weil–Petersson Hermitian metric. Finally, we show that the aforementioned Teichmüller space is locally modeled on a space of [Formula: see text] harmonic Beltrami differentials.



2016 ◽  
Vol 18 (04) ◽  
pp. 1550060 ◽  
Author(s):  
David Radnell ◽  
Eric Schippers ◽  
Wolfgang Staubach

For a compact Riemann surface of genus [Formula: see text] with [Formula: see text] punctures, consider the class of [Formula: see text]-tuples of conformal mappings [Formula: see text] of the unit disk each taking [Formula: see text] to a puncture. Assume further that (1) these maps are quasiconformally extendible to [Formula: see text], (2) the pre-Schwarzian of each [Formula: see text] is in the Bergman space, and (3) the images of the closures of the disk do not intersect. We show that the class of such non-overlapping mappings is a complex Hilbert manifold.



2015 ◽  
Vol 17 (04) ◽  
pp. 1550016 ◽  
Author(s):  
David Radnell ◽  
Eric Schippers ◽  
Wolfgang Staubach

We consider bordered Riemann surfaces which are biholomorphic to compact Riemann surfaces of genus g with n regions biholomorphic to the disk removed. We define a refined Teichmüller space of such Riemann surfaces (which we refer to as the WP-class Teichmüller space) and demonstrate that in the case that 2g + 2 - n > 0, this refined Teichmüller space is a Hilbert manifold. The inclusion map from the refined Teichmüller space into the usual Teichmüller space (which is a Banach manifold) is holomorphic. We also show that the rigged moduli space of Riemann surfaces with non-overlapping holomorphic maps, appearing in conformal field theory, is a complex Hilbert manifold. This result requires an analytic reformulation of the moduli space, by enlarging the set of non-overlapping mappings to a class of maps intermediate between analytically extendible maps and quasiconformally extendible maps. Finally, we show that the rigged moduli space is the quotient of the refined Teichmüller space by a properly discontinuous group of biholomorphisms.



Author(s):  
Nigel J. Newton

This paper develops information geometric representations for nonlinear filters in continuous time. The posterior distribution associated with an abstract nonlinear filtering problem is shown to satisfy a stochastic differential equation on a Hilbert information manifold. This supports the Fisher metric as a pseudo-Riemannian metric. Flows of Shannon information are shown to be connected with the quadratic variation of the process of posterior distributions in this metric. Apart from providing a suitable setting in which to study such information-theoretic properties, the Hilbert manifold has an appropriate topology from the point of view of multi-objective filter approximations. A general class of finite-dimensional exponential filters is shown to fit within this framework, and an intrinsic evolution equation, involving Amari's -1-covariant derivative, is developed for such filters. Three example systems, one of infinite dimension, are developed in detail.



Sign in / Sign up

Export Citation Format

Share Document