cryptic sex
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Alexandre Kuhn ◽  
Serge Aron ◽  
Olivier J. Hardy

Reproductive strategies are diverse and a whole continuum of mixed systems lies between strict sexuality and strict clonality (apomixis), including automixis, a parthenogenetic mode of reproduction involving a meiosis and increasing homozygosity over generations. These various systems impact the genetic structure of populations, which can therefore be used to infer reproductive strategies in natural populations. Here, we first develop a mathematical model, validated by simulations, to predict heterozygosity and inbreeding in mixed sexual-automictic populations. It highlights the predominant role of the rate of heterozygosity loss experienced during automixis (γ), which is locus dependent. When γ is low, mixed populations behave like purely sexual ones until sex becomes rare. In contrast, when γ is high, the erosion of genetic diversity is tightly correlated to the rate of sex, so that the individual inbreeding coefficient can inform on the ratio of sexual/asexual reproduction. In the second part of this study, we used our model to test the presence of cryptic sex in a hybridogenetic Cataglyphis ant where new queens are produced parthenogenetically, leaving males with an apparent null fitness while they are essential to colony development as sperm is required to produce workers. Occasional sexual production of queens could resolve this paradox by providing males some fertile progeny. To determine whether this occurs in natural populations, we simulated genotypic datasets in a population under various regimes of sexual vs. asexual reproduction for queen production and compared the distribution of inbreeding, expected heterozygosity and inter-individual relatedness coefficients with those observed in a natural population of Cataglyphis mauritanica using microsatellites. Our simulations show that the distribution of inter-individual relatedness coefficients was particularly informative to assess the relative rate of sexual/asexual reproduction, and our dataset was compatible with pure parthenogenesis but also with up to 2% sexual reproduction. Our approach, implemented in an R script, should be useful to assess reproductive strategies in other biological models.


2021 ◽  
Author(s):  
Zexian Zhu ◽  
Kazumi Matsubara ◽  
Foyez Shams ◽  
Jason Dobry ◽  
Erik Wapstra ◽  
...  

Reptile sex determination is attracting much attention because the great diversity of sex-determination and dosage compensation mechanisms permits us to approach fundamental questions about sex chromosome turnover and evolution. However, reptile sex chromosome variation remains largely uncharacterized and no reptile master sex determination genes have yet been identified. Here we describe a powerful and cost-effective chromosomics approach, combining probes generated from the microdissected sex chromosomes with transcriptome sequencing to explore this diversity in non-model Australian reptiles with heteromorphic or cryptic sex chromosomes. We tested the pipeline on a turtle, a gecko, and a worm-lizard, and we also identified sequences located on sex chromosomes in a monitor lizard using linked-read sequencing. Genes identified on sex chromosomes were compared to the chicken genome to identify homologous regions among the four species. We identified candidate sex determining genes within these regions, including conserved vertebrate sex-determining genes pdgfa, pdgfra amh and wt1, and demonstrated their testis or ovary-specific expression. All four species showed gene-by-gene rather than chromosome-wide dosage compensation. Our results imply that reptile sex chromosomes originated by the independent acquisition of sex-determining genes on different autosomes, as well as translocations between different ancestral macro- and micro-chromosomes. We discuss the evolutionary drivers of the slow differentiation, but rapid turnover, of reptile sex chromosomes.


2021 ◽  
Author(s):  
Nicolas O. Rode ◽  
Roula Jabbour-Zahab ◽  
Lorelei Boyer ◽  
Elodie Flaven ◽  
Francisco Hontoria ◽  
...  

Determining how and how often asexual lineages emerge within sexual species is central to our understanding of sex-asex transitions and the long-term maintenance of sex. Asexuality can arise "by transmission" from an existing asexual lineage to a new one, through different types of crosses. The occurrence of these crosses, cryptic sex, variation in ploidy and recombination within asexuals greatly complicates the study of sex-asex transitions, as they preclude the use of standard phylogenetic methods and genetic distance metrics. In this study we show how to overcome these challenges by developing new approaches to investigate the origin of the various asexual lineages of the brine shrimp Artemia parthenogenetica. We use a large sample of asexuals, including all known polyploids, and their sexual relatives. We combine flow cytometry with mitochondrial and nuclear DNA data. We develop new genetic distance measures and methods to compare various scenarios describing the origin of the different lineages. We find that all diploid and polyploid A. parthenogenetica likely arose within the last 80,000 years through successive and nested hybridization events that involved backcrosses with different sexual species. All A. parthenogenetica have the same common ancestor and therefore likely carry the same asexuality gene(s) and reproduce by automixis. These findings radically change our view of sex-asex transitions in this group, and show the importance of considering asexuality "by transmission" scenarios. The methods developed are applicable to many other asexual taxa.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 849
Author(s):  
Alexandr Sember ◽  
Michaela Pappová ◽  
Martin Forman ◽  
Petr Nguyen ◽  
František Marec ◽  
...  

Spiders are an intriguing model to analyse sex chromosome evolution because of their peculiar multiple X chromosome systems. Y chromosomes were considered rare in this group, arising after neo-sex chromosome formation by X chromosome-autosome rearrangements. However, recent findings suggest that Y chromosomes are more common in spiders than previously thought. Besides neo-sex chromosomes, they are also involved in the ancient X1X2Y system of haplogyne spiders, whose origin is unknown. Furthermore, spiders seem to exhibit obligatorily one or two pairs of cryptic homomorphic XY chromosomes (further cryptic sex chromosome pairs, CSCPs), which could represent the ancestral spider sex chromosomes. Here, we analyse the molecular differentiation of particular types of spider Y chromosomes in a representative set of ten species by comparative genomic hybridisation (CGH). We found a high Y chromosome differentiation in haplogyne species with X1X2Y system except for Loxosceles spp. CSCP chromosomes exhibited generally low differentiation. Possible mechanisms and factors behind the observed patterns are discussed. The presence of autosomal regions marked predominantly or exclusively with the male or female probe was also recorded. We attribute this pattern to intraspecific variability in the copy number and distribution of certain repetitive DNAs in spider genomes, pointing thus to the limits of CGH in this arachnid group. In addition, we confirmed nonrandom association of chromosomes belonging to particular CSCPs at spermatogonial mitosis and spermatocyte meiosis and their association with multiple Xs throughout meiosis. Taken together, our data suggest diverse evolutionary pathways of molecular differentiation in different types of spider Y chromosomes.


2019 ◽  
Vol 157 (3) ◽  
pp. 166-171 ◽  
Author(s):  
Alessio Iannucci ◽  
Marta Svartman ◽  
Massimo Bellavita ◽  
Guido Chelazzi ◽  
Roscoe Stanyon ◽  
...  

Our knowledge of Testudines evolution is limited by the lack of modern cytogenetic data. Compared to other reptiles, there is little information even on chromosome banding, let alone molecular cytogenetic data. Here, we provide detailed information on the karyotype of the European pond turtle Emys orbicularis, a model Emydidae, employing both chromosome banding and molecular cytogenetics. We provide a high-resolution G-banded karyotype and a map of rDNA genes and telomeric sequences using fluorescence in situ hybridization. We test hypotheses of sex-determining mechanisms in Emys by comparative genomic hybridization to determine if Emys has a cryptic sex-specific region. Our results provide valuable data to guide future efforts on genome sequencing and anchoring in Emydidae and for understanding karyotype evolution in Testudines.


2018 ◽  
Vol 122 (7) ◽  
pp. 629-638 ◽  
Author(s):  
Anabela Lopes ◽  
Benedetto T. Linaldeddu ◽  
Alan J.L. Phillips ◽  
Artur Alves

2018 ◽  
Author(s):  
Chris Ellison ◽  
Doris Bachtrog

Theory predicts that selfish genetic elements that increase their transmission are prone to originate on sex chromosomes but create strong selective pressure to evolve suppressors due to reduced fertility and distorted population sex ratios. Here we show that recurrent genetic conflict over sex chromosome transmission appears to be an important evolutionary force that has shaped gene content evolution of sex chromosomes in Drosophila. We demonstrate that convergent acquisition and amplification of spermatid expressed gene families are common on Drosophila sex chromosomes, and especially on recently formed ones, and harbor characteristics typical of meiotic drivers. We carefully characterize one putative novel cryptic sex chromosome distortion system that arose independently several times in members of the Drosophila obscura group. Co-amplification of the S-Lap1/GAPsec gene pair on both the X and the Y chromosome occurred independently several times in members of the D. obscura group, where this normally autosomal gene pair is sex-linked due to a sex chromosome - autosome fusion. Investigation of gene expression and short RNA profiles at the S-Lap1/GAPsec system suggest that meiotic drive and suppression likely involves RNAi mechanisms. Our finding suggests that recurrent conflict over sex chromosome transmission has shaped widespread genomic and evolutionary patterns, including the epigenetic regulation of sex chromosomes, the distribution of sex-biased genes, and the evolution of hybrid sterility.


2017 ◽  
Vol 152 (3) ◽  
pp. 148-157 ◽  
Author(s):  
Larisa S. Biltueva ◽  
Dimitry Y. Prokopov ◽  
Alexey I. Makunin ◽  
Alexey S. Komissarov ◽  
Anna V. Kudryavtseva ◽  
...  

Acipenseriformes represent a phylogenetically basal clade of ray-finned fish characterized by unusual genomic traits, including paleopolyploid states of extant genomes with high chromosome numbers and slow rates of molecular evolution. Despite a high interest in this fish group, only a limited number of studies have been accomplished on the isolation and characterization of repetitive DNA, karyotype standardization is not yet complete, and sex chromosomes are still to be identified. Here, we applied next-generation sequencing and cluster analysis to characterize major fractions of sterlet (Acipenser ruthenus) repetitive DNA. Using FISH, we mapped 16 tandemly arranged sequences on sterlet chromosomes and found them to be unevenly distributed in the genome with a tendency to cluster in particular regions. Some of the satellite DNAs might be used as specific markers to identify individual chromosomes and their paralogs, resulting in the unequivocal identification of at least 18 chromosome pairs. Our results provide an insight into the characteristic genomic distribution of the most common sterlet repetitive sequences. Biased accumulation of repetitive DNAs in particular chromosomes makes them especially interesting for further search for cryptic sex chromosomes. Future studies of these sequences in other acipenserid species will provide new perspectives regarding the evolution of repetitive DNA within the genomes of this fish order.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Soledad Sagastume ◽  
Raquel Martín-Hernández ◽  
Mariano Higes ◽  
Nuno Henriques-Gil

Sign in / Sign up

Export Citation Format

Share Document